Skip to main content
Log in

Extrapolation of significant genes and transcriptional regulatory networks involved in Zea mays in response in UV-B stress

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

A wide range of plant species growth influenced when they exposed to solar UV-B radiation. Leaves of the plant are highly affected by UV-B radiation lead to the reduction in the growth of the plant. Current work demonstrates the comparative transcriptional changes and visible symptoms occurred in the maize leaf growth zone (GZ). Primary objective of this study was to identify differentially expressed genes (DEGs) responsible for leaf growth and their association in the transcriptional regulatory network under UV-B stress. Whole transcriptomic data was analysed and the quality check was tested for each sample and further genome-wide mapping and DEGs were performed. Gene Ontology (GO) based functional annotation, associated transcriptional networks and molecular pathways were annotated. Reduction in cell production due to UV-B stress causes a decrease in leaf’s length and size was observed. Further, the specific role of the DEGs, in UV-B signalling pathways and other molecular functions responsible for leaf cell death was discovered. Results also infer that the major changes occurred in the cell cycle, transcriptional regulation, post-transcriptional modification, phytohormones, flavonoids biosynthesis, and chromatin remodeling. UV-B signalling pathways and the transcriptional regulatory networks infer the different molecular steps along with downstream transcriptional and post-transcriptional control of metabolic enzymes used in long-term memory adoption and attainment resistance to UV-B stress identified. Effects of UV-B radiation on leaf growth was noted in this study. UV-B stress response genes and associated transcriptional regulatory networks were identified, can be used in developing the marker assist UB-B stress tolerant genotypes of the maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data, pp 175–176

  • Andriankaja M et al (2012) Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell 22(1):64–78

    Article  PubMed  CAS  Google Scholar 

  • Ballare CL et al (2001) Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego (southern Argentina): an overview of recent progress. J Photochem Photobiol B 62(1):67–77

    Article  PubMed  CAS  Google Scholar 

  • Baute J et al (2016) Combined large-scale phenotyping and transcriptomics in maize reveals a robust growth regulatory network. Plant Physiol 2016:01883

    Google Scholar 

  • Beemster GTS, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116(4):1515–1526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beemster GTS et al (2005) Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant physiology 138(2):734–743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biever JJ, Brinkman D, Gardner G (2014) UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation. J Exp Bot 65(11):2949–2961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bornman JF, Teramura AH (1993) Effects of ultraviolet-B radiation on terrestrial plants. In: Environmental UV photobiology. Springer, New York, pp 427–471

    Chapter  Google Scholar 

  • Brown BA et al (2005) A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci USA 102(50):18225–18230

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MM et al (1998) Effects of increased solar ultraviolet radiation on terrestrial ecosystems. J Photochem Photobiol B 46(1):40–52

    Article  CAS  Google Scholar 

  • Campi M et al (2012) Participation of chromatin-remodeling proteins in the repair of ultraviolet-B-damaged DNA. Plant Physiol 158(2):981–995

    Article  PubMed  CAS  Google Scholar 

  • Casadevall R et al (2013) Repression of growth regulating factors by the microRNA396 inhibits cell proliferation by UV-B radiation in Arabidopsis leaves” Plant Cell 25(9):3570–3583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casati P, Walbot V (2003) Gene expression profiling in response to ultraviolet radiation in maize genotypes with varying flavonoid content. Plant Physiol 132(4):1739–1754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casati P et al (2008) Histone acetylation and chromatin remodeling are required for UV-B–dependent transcriptional activation of regulated genes in maize. Plant Cell 20(4):827–842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cloix C, Jenkins GI (2008) Interaction of the Arabidopsis UV-B-specific signaling component UVR8 with chromatin. Mol Plant 1(1):118–128

    Article  PubMed  CAS  Google Scholar 

  • Conesa A et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Csepregi K et al (2017) Developmental age and UV-B exposure co-determine antioxidant capacity and flavonol accumulation in Arabidopsis leaves. Environ Exp Bot 140:19–25

    Article  CAS  Google Scholar 

  • Czemmel S et al (2017) Transcriptome-wide identification of novel UV-B-and light modulated flavonol pathway genes controlled by VviMYBF1. Front Plant Sci 8:1084

    Article  PubMed  PubMed Central  Google Scholar 

  • Donnelly PM et al (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215(2):407–419

    Article  PubMed  CAS  Google Scholar 

  • Dye BT, Schulman BA (2007) Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 36:131–150

    Article  PubMed  CAS  Google Scholar 

  • Fang C et al (2016) Methyl-CpG binding domain protein acts to regulate the repair of cyclobutane pyrimidine dimers on rice DNA. Sci Rep 6:34569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fina J et al (2017) UV-B inhibits leaf growth through changes in growth regulating factors and Gibberellin levels. Plant Physiol 174(2):1110–1126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flint SD, Searles PS, Caldwell MM (2004) Field testing of biological spectral weighting functions for induction of UV-absorbing compounds in higher plants. Photochem Photobiol 79(5):399–403

    Article  PubMed  CAS  Google Scholar 

  • González Besteiro MA et al (2011) Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J 68(4):727–737

    Article  PubMed  CAS  Google Scholar 

  • Gupta S et al (2015a) Exploration of new drug-like inhibitors for serine/threonine protein phosphatase 5 of Plasmodium falciparum: a docking and simulation study. J Biomol Struct Dynam 33(11):2421–2441

    Article  CAS  Google Scholar 

  • Gupta S et al (2015b) Extrapolation of inter domain communications and substrate binding cavity of camel HSP70 1A: a molecular modeling and dynamics simulation study. PLoS ONE 10(8):e0136630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta S et al (2016a) Embryo and endosperm specific comparative transcriptome analysis of Triticum aestivum in response to ABA and H2O2 stress. In: International Conference on Bioinformatics and Systems Biology (BSB), IEEE

  • Gupta S et al (2016b) Identification of novel abiotic stress proteins in Triticum aestivum through functional annotation of hypothetical proteins. Interdiscip Sci Comput Life Sci 10:1–16

    Google Scholar 

  • Gupta S, Kumari M, Kumar H, Varadwaj PK (2017a) Genome-wide analysis of miRNAs and Tasi-RNAs in Zea mays in response to phosphate deficiency. Funct Integr Genom 17(2–3): 335–351

    Article  CAS  Google Scholar 

  • Gupta S et al (2017b) Transcriptomic analysis of soil grown T. aestivum cv. root to reveal the changes in expression of genes in response to multiple nutrients deficiency. Front Plant Sci 8:1025

    Article  PubMed  PubMed Central  Google Scholar 

  • Han Y-J, Song P-S, Kim J-l (2007) Phytochrome-mediated photomorphogenesis in plants. J Plant Biol 50(3):230–240

    Article  CAS  Google Scholar 

  • Hayes S et al (2017) UV-B perceived by the UVR8 photoreceptor inhibits plant thermomorphogenesis. Curr Biol 27(1):120–127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hectors K et al (2007) Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol 175(2):255–270

    Article  PubMed  CAS  Google Scholar 

  • Hectors K et al (2010) UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. J Exp Bot 61(15):4339–4349

    Article  PubMed  CAS  Google Scholar 

  • Hoecker U (2017) The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling. Curr Opin Plant Biol 37:63–69

    Article  PubMed  CAS  Google Scholar 

  • Horiguchi G et al (2006) Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119(1):37–42

    Article  PubMed  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GI (2014) Structure and function of the UV-B photoreceptor UVR8. Curr Opin Struct Biol 29:52–57

    Article  PubMed  CAS  Google Scholar 

  • Jenkins GI (2017) Photomorphogenic responses to ultraviolet-B light. Plant Cell Environ 40(11):2544–2557

    Article  PubMed  CAS  Google Scholar 

  • Jia X et al (2009) UV-B-responsive microRNAs in Populus tremula. J Plant Physiol 166(18):2046–2057

    Article  PubMed  CAS  Google Scholar 

  • Kaiserli E, Jenkins GI (2007) UV-B promotes rapid nuclear translocation of the Arabidopsis UV-B–specific signaling component UVR8 and activates its function in the nucleus. Plant Cell 19.8:2662–2673

    Article  CAS  Google Scholar 

  • Kim B-M et al (2015) UV-B radiation-induced oxidative stress and p38 signaling pathway involvement in the benthic copepod Tigriopus japonicus. Comp Biochem Physiol C 167:15–23

    CAS  Google Scholar 

  • Kovacs E, Keresztes A (2002) Effect of gamma and UV-B/C radiation on plant cells. Micron 33(2):199–210

    Article  PubMed  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2(1):014002

    Article  Google Scholar 

  • Mehrtens F et al (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138(2):1083–1096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muchow RC, Sinclair TR, Bennett JM (1990) Temperature and solar radiation effects on potential maize yield across locations. Agron J 82(2):338–343

    Article  Google Scholar 

  • Müller-Xing R, Xing Q, Goodrich J (2014) Footprints of the sun: memory of UV and light stress in plants. Front Plant Sci 5:474

    PubMed  PubMed Central  Google Scholar 

  • Patro R et al (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14(4):417–419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perochon A et al (2011) Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 93(12):2048–2053

    Article  PubMed  CAS  Google Scholar 

  • Prasad CVSS et al (2013) Molecular dynamic and docking interaction study of Heterodera glycines serine proteinase with Vigna mungo proteinase inhibitor. Appl Biochem Biotechnol 170(8):1996–2008

    Article  PubMed  CAS  Google Scholar 

  • Robson TM, Aphalo PJ (2012) Species-specific effect of UV-B radiation on the temporal pattern of leaf growth. Physiol Plant 144(2):146–160

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Agrawal SB, Agrawal M (2014) UVR8 mediated plant protective responses under low UV-B radiation leading to photosynthetic acclimation. J Photochem Photobiol B 137:67–76

    Article  PubMed  CAS  Google Scholar 

  • Sprangers K, Avramova V, Beemster BT (2016) Kinematic analysis of cell division and expansion: quantifying the cellular basis of growth and sampling developmental zones in Zea mays leaves. JoVE 118:e54887–e54887

    Google Scholar 

  • Suhandono S, Apriyanto A, Ihsani N (2014) Isolation and characterization of three cassava elongation factor 1 alpha (MeEF1A) promoters. PLoS ONE 9(1):e84692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sztatelman O et al (2015) The effect of UV-B on Arabidopsis leaves depends on light conditions after treatment. BMC Plant Biol 15(1):281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi M et al (2011) Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA. Plant J 66(3):433–442

    Article  PubMed  CAS  Google Scholar 

  • Tardieu F, Granier C (2000) Quantitative analysis of cell division in leaves: methods, developmental patterns and effects of environmental conditions. Plant Mol Biol 43(5):555–567

    Article  PubMed  CAS  Google Scholar 

  • Tohge T et al (2011) Transcriptional and metabolic programs following exposure of plants to UV-B irradiation. Plant Signal Behav 6(12):1987–1992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf-shape determination. Annu Rev Plant Biol 57:477–496

    Article  PubMed  CAS  Google Scholar 

  • Tsukaya H (2008) Controlling size in multicellular organs: focus on the leaf. PLoS Biol 6(7):e174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wargent JJ et al (2009) Ultraviolet radiation as a limiting factor in leaf expansion and development. Photochem Photobiol 85(1):279–286

    Article  PubMed  CAS  Google Scholar 

  • Xu X et al (2015) Illuminating progress in phytochrome-mediated light signaling pathways. Trends Plant Sci 20:641–650

    Article  PubMed  CAS  Google Scholar 

  • Yin R, Ulm R (2017) How plants cope with UV-B: from perception to response. Curr Opin Plant Biol 37:42–48

    Article  PubMed  CAS  Google Scholar 

  • Yoon MY et al (2016) Transcriptomic profiling of soybean in response to high-intensity UV-B irradiation reveals stress defense signaling. Front Plant Sci 7:1917

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to thank to Indian Institute of Information Technology Allahabad for providing the facilities required to execute this work.

Author information

Authors and Affiliations

Authors

Contributions

SG, VG and PKV participated in work design and data interpretation. SG and VG performed RNA-seq bioinformatics and statistical analyses. SG, VV, and PK prepared the manuscript.

Corresponding author

Correspondence to Pritish Kumar Varadwaj.

Ethics declarations

Conflict of interest

All authors affirm that they do not have any conflict of interest.

Ethical approval

All procedures performed in this study does not involved any human participants and followed other ethical standard of the institute.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 2986 KB)

Supplementary material 2 (XLSX 470 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Gupta, V., Singh, V. et al. Extrapolation of significant genes and transcriptional regulatory networks involved in Zea mays in response in UV-B stress. Genes Genom 40, 973–990 (2018). https://doi.org/10.1007/s13258-018-0705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0705-1

Keywords

Navigation