Skip to main content
Log in

Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Ralstonia solanacearum is a soil-borne phytopathogen associated with bacterial wilt disease of sesame. R. solanacearum is the predominant agent causing damping-off from tropical to temperate regions. Because bacterial wilt has decreased the sesame industry yield, we sequenced the SEPPX05 genome using PacBio and Illumina HiSeq 2500 systems and revealed that R. solanacearum strain SEPPX05 carries a bipartite genome consisting of a 3,930,849 bp chromosome and a 2,066,085 bp megaplasmid with 66.84% G+C content that harbors 5,427 coding sequences. Based on the whole genome, phylogenetic analysis showed that strain SEPPX05 is grouped with two phylotype I strains (EP1 and GMI1000). Pan-genomic analysis shows that R. solanacearum is a complex species with high biological diversity and was able to colonize various environments during evolution. Despite deletions, insertions, and inversions, most genes of strain SEPPX05 have relatively high levels of synteny compared with strain GMI1000. We identified 104 genes involved in virulence-related factors in the SEPPX05 genome and eight absent genes encoding T3Es of GMI1000. Comparing SEPPX05 with other species, we found highly conserved secretion systems central to modulating interactions of host bacteria. These data may provide important clues for understanding underlying pathogenic mechanisms of R. solanacearum and help in the control of sesame bacterial wilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfano JR, Collmer A (2004) Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 42:385–414

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ansari MM, Ram T (1987) Bacterial wilt of sesamum caused by Pseudomonas solanacearum, a new record for Andaman and Nicobar Islands. Indian Phytopathol 40:236

    Google Scholar 

  • Ashri A (1989) Sesame. In: Röbbelen G, Downey RK, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, pp 375–387

    Google Scholar 

  • Bocsanczy AM, Achenbach UC, Mangravita-Novo A, Chow M, Norman DJ (2014) Proteomic comparison of Ralstonia solanacearum strains reveals temperature dependent virulence factors. BMC Genom 15:280

    Article  CAS  Google Scholar 

  • Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I et al (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown DG, Swanson JK, Allen C (2007) Two host-induced Ralstonia solanacearum genes, acrA and dinF, encode multidrug efflux pumps and contribute to bacterial wilt virulence. Appl Environ Microbiol 73:2777–2786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castillo JA, Greenberg JT (2007) Evolutionary dynamics of Ralstonia solanacearum. Appl Environ Microbiol 73:1225–1238

    Article  PubMed  CAS  Google Scholar 

  • Chellemi DO, Olson SM, Mitchell DJ, Secker I, McSorley R (1997) Adaptation of soil solarization to the integrated management of soilborne pests of tomato under humid conditions. Phytopathology 87:250–258

    Article  PubMed  CAS  Google Scholar 

  • Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE et al (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569

    Article  PubMed  CAS  Google Scholar 

  • Cianciotto NP (2005) Type II secretion: a protein secretion system for all seasons. Trends Microbiol 13:581–588

    Article  PubMed  CAS  Google Scholar 

  • Coll NS, Valls M (2013) Current knowledge on the Ralstonia solanacearum type III secretion system. Microb Biotechnol 6:614–620

    PubMed  PubMed Central  CAS  Google Scholar 

  • Collonnier C, Mulya K, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, Souvannavong V, Ducreux G, Sihachakr D (2001) Source of resistance against Ralstonia solanacearum in fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Plant Sci 160:301–313

    Article  PubMed  CAS  Google Scholar 

  • Cornelis GR, Van Gijsegem F (2000) Assembly and function of type III secretory systems. Ann Rev Microbiol 54:735–774

    Article  CAS  Google Scholar 

  • Delcher AL, Salzberg SL, Phillippy AM (2003) Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinform 10–13

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denny TP (1995) Involvement of bacterial polysaccharides in plant pathogenesis. Annu Rev Phytopat 33:173–197

    Article  CAS  Google Scholar 

  • Deslandes L, Genin S (2014) Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. Curr Opin Plant Biol 20:110–117

    Article  PubMed  Google Scholar 

  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fegan M, Prior P (2005) How complex is the Ralstonia solanacearum species complex. APS Press, Bethesda, pp 449–461

    Google Scholar 

  • Fichot EB, Norman RS (2013) Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform. Microbiome 1:e10

    Article  Google Scholar 

  • Flores-Cruz Z, Allen C (2011) Necessity of oxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Appl Environ Microbiol 77:6426–6432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser-Liggett CM (2005) Insights on biology and evolution from microbial genome sequencing. Genome Res 15:1603–1610

    Article  PubMed  CAS  Google Scholar 

  • Garg RP, Huang J, Yindeeyoungyeon W, Denny TP, Schell MA (2000) Multicomponent transcriptional regulation at the complex promoter of the exopolysaccharide I biosynthetic operon of Ralstonia solanacearum. J Bacteriol 182:6659–6666

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Genin S, Boucher C (2004) Lessons learned from the genome analysis of Ralstonia solanacearum. Annu Rev Phytopathol 42:107–134

    Article  PubMed  CAS  Google Scholar 

  • Gillings MR, Fahy P (1994) Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex. Cab International, Oxfordshire

    Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35(suppl_2):W52-W57

    PubMed Central  Google Scholar 

  • Guarischi-Sousa R, Puigvert M, Coll NS, Siri MI, Pianzzola MJ, Valls M, Setubal JC (2016) Complete genome sequence of the potato pathogen Ralstonia solanacearum UY031. Stand Genomic Sci 11:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayward AC (1960) Characteristics of Pseudomonas solanacearum. J Appl Microbiol 27:265–277

    Google Scholar 

  • Hayward AC (1991) Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  PubMed  CAS  Google Scholar 

  • He LY (1983) Characteristics of strains of Pseudomonas solanacearum from China. Plant dis 67:1357–1361

    Article  Google Scholar 

  • He LY, Hua JY (1983) Epidemiology and control of bacterial wilt of plants in China. Acta Phytophy Sin 9:8–10 (In Chinese)

    Google Scholar 

  • Henderson IR, Nataro JP (2001) Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua JL, Hu BS, Li XM, Huang RR, Liu GR (2012) Identification of the pathogen causing bacterial wilt of sesame and its biovars. Acta Phytophy Sin 39:39–44 (In Chinese)

    CAS  Google Scholar 

  • Jayaraman J, Choi S, Prokchorchik M, Choi DS, Spiandore A, Rikkerink EH, Templeton MD, Segonzac C, Sohn KH (2017) A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci Rep 7:3557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamal-Eldin A, Appleqvist L (1994) Variation in the compositions of sterols, tocopherols and lignans in seed oils from four Sesamum species. J Am Oil Chem Soc 71:149–156

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109-114

    Article  CAS  Google Scholar 

  • Kang Y, Liu H, Genin S, Schell MA, Denny TP (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427–437

    Article  PubMed  CAS  Google Scholar 

  • Kapoor S, Parmar S, Yadav M, Chaudhary D, Sainger M, Jaiwal R, Jaiwal P (2014) Sesame (Sesamum indicum L.). Methods Mol Biol 1224:37–45

    Article  CAS  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  PubMed  Google Scholar 

  • Koren S, Schatz MC, Walenz BP, Martin J, Howard JT, Ganapathy G, Wang Z, Rasko DA, McCombie WR, Jarvis ED et al (2012) Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol 30:693–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laferriere LT, Helgeson JP, Allen C (1999) Fertile Solanum tuberosum + S. commersonii somatic hybrids as sources of resistance to bacterial wilt caused by Ralstonia solanacearum. Theor Appl Genet 98:1272–1278

    Article  Google Scholar 

  • Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Wu S, Bai X, Liu Y, Lu J, Liu Y, Xiao B, Lu X, Fan L (2011) Genome sequence of the tobacco bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 193:6088–6089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li P, Wang D, Yan J, Zhou J, Deng Y, Jiang Z, Cao B, He Z, Zhang L (2016) Genomic analysis of phylotype I strain EP1 reveals substantial divergence from other strains in the Ralstonia solanacearum species complex. Front Microbiol 7:1719

    PubMed  PubMed Central  Google Scholar 

  • Lindgren PB (1997) The role of hrp genes during plant-bacterial interactions. Annu Rev Phytopathol 35:129–152

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Zhang S, Schell MA, Denny TP (2005) Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol Plant Microbe Interact 18:1296–1305

    Article  PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of tRNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macho AP, Guidot A, Barberis P, Beuzón CR, Genin S (2010) A competitive index assay identifies several Ralstonia solanacearum type III effector mutant strains with reduced fitness in host plants. Mol Plant Microbe Interact 23:1197–1205

    Article  PubMed  CAS  Google Scholar 

  • Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA et al (2012) Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 13:614–629

    Article  PubMed  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    Article  PubMed  CAS  Google Scholar 

  • Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S (2013) Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genom 14:e859

    Article  CAS  Google Scholar 

  • Peng Z, Hu Y, Xie J, Potnis N, Akhunova A, Jones J, Liu Z, White FF, Liu S (2016) Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genom 17:21

    Article  CAS  Google Scholar 

  • Poueymiro M, Genin S (2009) Secreted proteins from Ralstonia solanacearum: a hundred tricks to kill a plant. Curr Opin Microbiol 12:44–52

    Article  PubMed  CAS  Google Scholar 

  • Poueymiro M, Cunnac S, Barberis P, Deslandes L, Peeters N, Cazale-Noel AC, Boucher C, Genin S (2009) Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Mol Plant Microbe Interact 22:538–550

    Article  PubMed  CAS  Google Scholar 

  • Pradhanang PM, Elphinstone JG, Fox RT (2000) Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathol 49:414–422

    Article  Google Scholar 

  • Prior P, Ailloud F, Dalsing BL, Remenant B, Sanchez B, Allen C (2016) Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genom 17:90

    Article  CAS  Google Scholar 

  • Records AR (2011) The type VI secretion system: a multipurpose delivery system with a phage-like machinery. Mol Plant Microbe Interact 24:751–757

    Article  PubMed  CAS  Google Scholar 

  • Remenant B, Coupat-Goutaland B, Guidot A, Cellier G, Wicker E, Allen C, Fegan M, Pruvost O, Elbaz M, Calteau A et al (2010) Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genom 11:379

    Article  CAS  Google Scholar 

  • Remenant B, de Cambiaire JC, Cellier G, Jacobs JM, Mangenot S, Barbe V, Lajus A, Vallenet D, Medigue C, Fegan M et al (2011) Ralstonia syzygii, the Blood Disease Bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLoS ONE 6:e24356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Safni I, Cleenwerck I, De Vos P, Fegan M, Sly L, Kappler U (2014) Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov. R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int J Syst Evol Microbiol 64:3087–3103

    Article  PubMed  CAS  Google Scholar 

  • Saharan G, Mehta N, Sangwan M (2005) Diseases of oilseed crops. Indus, New Delhi

    Google Scholar 

  • Saile E, McGarvey JA, Schell MA, Denny TP (1997) Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology 87:1264–1271

    Article  PubMed  CAS  Google Scholar 

  • Salanoubat M, Genin S, Artiguenave F, Gouzy J, Mangenot S, Arlat M, Billault A, Brottier P, Camus JC (2002) Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415:497–502

    Article  PubMed  CAS  Google Scholar 

  • Schell MA (2000) Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu Rev Phytopathol 38:263–292

    Article  PubMed  CAS  Google Scholar 

  • Schneider P, Jacobs JM, Neres J, Aldrich CC, Allen C, Nett M, Hoffmeister D (2009) The global virulence regulators VsrAD and PhcA control secondary metabolism in the plant pathogen Ralstonia solanacearum. ChemBioChem 10:2730–2732

    Article  PubMed  CAS  Google Scholar 

  • Sole M, Popa C, Mith O, Sohn KH, Jones JD, Deslandes L, Valls M (2012) The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Mol Plant Microbe Interact 25:941–953

    Article  PubMed  CAS  Google Scholar 

  • Soto MJ, Sanjuan J, Olivares J (2006) Rhizobia and plant-pathogenic bacteria: common infection weapons. Microbiology 152:3167–3174

    Article  PubMed  CAS  Google Scholar 

  • Taghavi M, Hayward C, Sly L, Fegan M (1996) Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences. Int J Syst Bacteriol 46:10–15

    Article  PubMed  CAS  Google Scholar 

  • Tans-Kersten J, Huang H, Allen C (2001) Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183:3597–3605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tans-Kersten J, Brown D, Allen C (2004) Swimming motility, a virulence trait of Ralstonia solanacearum, is regulated by FlhDC and the plant host environment. Mol Plant Microbe Interact 17:686–695

    Article  PubMed  CAS  Google Scholar 

  • Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, Kieffer-Jacquinod S, Rivas S, Marco Y, L. D (2010) Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog 6:e1001202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tatusov RL (1997) A genomic perspective on protein families. Science 278:631–637

    Article  PubMed  CAS  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28:33–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    Article  PubMed  CAS  Google Scholar 

  • Tseng TT, Tyler BM, Setubal JC (2009) Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9(Suppl_1):S2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Sluys MA, Monteiro-Vitorello CB, Camargo LE, Menck CF, Da Silva AC, Ferro JA, Oliveira MC, Setubal JC, Kitajima JP, Simpson AJ (2002) Comparative genomic analysis of plant-associated bacteria. Annu Rev Phytopathol 40:169–189

    Article  PubMed  CAS  Google Scholar 

  • Wei CF, Kvitko BH, Shimizu R, Crabill E, Alfano JR, Lin NC, Martin GB, Huang HC, Collmer A (2007) A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant J 51:32–46

    Article  PubMed  CAS  Google Scholar 

  • Wicker E, Lefeuvre P, de Cambiaire JC, Lemaire C, Poussier S, Prior P (2011) Contrasting recombination patterns and demographic histories of the plant pathogen Ralstonia solanacearum inferred from MLSA. ISME J 6:961–974

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu W, Huang H, Ling Z, Yu Z, Jiang Y, Liu P, Li X (2015) Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C. Ecotoxicology 25:234–247

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Zheng HJ, Liu L, Pan ZC, Prior P, Tang B, Xu JS, Zhang H, Tian Q, Zhang LQ et al (2011) Complete genome sequence of the plant pathogen Ralstonia solanacearum strain Po82. J Bacteriol 193:4261–4262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov. Microbiol Immunol 39:897–904

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Allen C (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188:3697–3708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39(suppl_2):W347–W352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Pathol 152:537–542

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Xiangmin Li (Institute of Plant Protect, Jiangxi Academy of Agricultural Sciences, China) for reviewing the manuscript and giving valuable suggestions and Zoe Rouy for genomes integration of strain SEPPX05 into the MaGe platform.

Funding

This work were supported by National Natural Science Foundation of China (NSFC, Grant Number 31,360,428), Key Technology Research and Development Program Jiangxi Proveince (Grant Number: 20121BBF60015), and Innovation Fund for the Doctoral Program of Jiangxi Academy of Agricultural Sciences (Grant Number: 20142C13S006). National Industry Technical System of Secondary Centre of Oil Crops (Grant Number: CARS-14).

Author information

Authors and Affiliations

Authors

Contributions

XL performed annotation of the genome. XL and JL designed the experiments and wrote the paper. XH, GC, LZ and LW contributed to data analysis. XL and XH isolated the R. solanacearum strain SEPPX05. XL and JL revised the manuscript. All of the authors read and approved the final manuscript.

Corresponding author

Correspondence to Juling Hua.

Ethics declarations

Competing interests

Xinshen Li declares that he has no conflict of interest. Xiaomei Huang declares that she has no conflict of interest. Gongyou Chen declares that he has no conflict of interest. Lifang Zou declares that she has no conflict of interest. Lingen Wei declares that he has no conflict of interest. Juling Hua declares that she has no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human or animals subjects performed by any of the authors.

Ethical approval

All the experiments were performed according to the experiment security regulations of Jiangxi Academy of Agricultural Sciences (JAAS), and approved by the biosafety committee in JAAS.

Additional information

Xinshen Li and Xiaomei Huang have contributed equally and should be regarded as joint first authors.

Data availability statement: The whole genome sequence of R. solanacearum SEPPX05 has been uploaded to the NCBI database with the accession number CP021448.1 (chromosome) and CP021449.1 (megaplasmid), and all dates are available from the NCBI database.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huang, X., Chen, G. et al. Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05. Genes Genom 40, 657–668 (2018). https://doi.org/10.1007/s13258-018-0667-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0667-3

Keywords

Navigation