Skip to main content
Log in

Alzheimer’s disease related genes during primate evolution

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

During primate evolution, the neuronal and cognition-related genes have evolved rapidly. These genes seem to induce neurological illnesses such as Alzheimer’s disease (AD). In this study, we analyzed genes APOE, TOMM40, and PICALM known as the risk factors of AD. We performed bioinformatics analyses in relation to evolution, phylogeny, and protein structure for those genes in humans, Neanderthals, chimpanzees, bonobos, gorillas, orangutans, crab-eating monkeys, and rhesus monkeys. Cholesterol-related genes showed relatively rapid evolution toward a lower risk of AD. Neanderthals showed relatively higher polymorphism in genes APOE, TOMM40, and PICALM than humans did. Phylogeny indicated different topologies in the trichotomy of humans, chimpanzees, and gorillas in terms of genes APOE, TOMM40, and PICALM. These results provide to hominin-specific patterns in three genes, and give clues to the modern human-specific traits of AD and shed light on further functional research helping to understand AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bekris LM, Lutz F, Yu C-E (2012) Functional analysis of APOE locus genetic variation implicates regional enhancers in the regulation of both TOMM40 and APOE. J Human Genet 57:18–25

    Article  CAS  Google Scholar 

  • Bell AC, West AG, Felsenfeld G (1999) The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98:387–396

    Article  CAS  PubMed  Google Scholar 

  • Bertram L et al (2008) Genome-wide association analysis reveals putative Alzheimer’s disease susceptibility loci in addition to APOE. Am J Hum Genet 83:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley BJ (2008) Reconstructing phylogenies and phenotypes: a molecular view of human evolution. J Anat 212:337–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushey AM, Dorman ER, Corces VG (2008) Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol cell 32:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caselli RJ, Dueck AC, Huentelman MJ, Lutz MW, Saunders AM, Reiman EM, Roses AD (2012) Longitudinal modeling of cognitive aging and the TOMM40 effect. Alzheimers Dement 8:490–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Chartier-Hariln M-C et al (1994) Apolipoprotein E, ɛ4 allele as a major risk factor for sporadic early and late-onset forms of Alzheimer’s disease: analysis of the 19q13. 2 chromosomal region. Human Mol Genet 3:569–574

    Article  Google Scholar 

  • Chen X et al (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:1106–1117

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Li Q, Wang J (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci USA 108:14813–14818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Tian Y, Shu W, Bo X, Wang S (2012) Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. PLoS ONE 7:e41374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Koning AJ, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7:e1002384

    Article  PubMed  PubMed Central  Google Scholar 

  • Deelen J et al (2011) Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging cell 10:686–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon JR et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorus S et al (2004) Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119:1027–1040

    Article  CAS  PubMed  Google Scholar 

  • Dunn KL, Zhao H, Davie JR (2003) The insulator binding protein CTCF associates with the nuclear matrix. Exp Cell Res 288:218–223

    Article  CAS  PubMed  Google Scholar 

  • ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  CAS  PubMed  Google Scholar 

  • Evans PD, Anderson JR, Vallender EJ, Gilbert SL, Malcom CM, Dorus S, Lahn BT (2004) Adaptive evolution of ASPM, a major determinant of cerebral cortical size in humans. Hum Mol Genet 13:489–494

    Article  CAS  PubMed  Google Scholar 

  • Finch CE, Sapolsky RM (1999) The evolution of Alzheimer disease, the reproductive schedule, and apoE isoforms☆. Neurobiol Aging 20:407–428

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud Se, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  • Gaszner M, Felsenfeld G (2006) Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet 7:703–713

    Article  CAS  PubMed  Google Scholar 

  • Gibbs RA et al (2007) Evolutionary and biomedical insights from the Rhesus macaque genome. Science 316:222–234

    Article  CAS  PubMed  Google Scholar 

  • Glazko GV, Nei M (2003) Estimation of divergence times for major lineages of primate species. Mol Biol Evol 20:424–434

    Article  CAS  PubMed  Google Scholar 

  • GTEx Consortium (2015) The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348:648–660

    Article  PubMed Central  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  • Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489

    Article  CAS  PubMed  Google Scholar 

  • Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill K, Model K, Ryan MT, Dietmeier K, Martin F, Wagner R, Pfanner N (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395:516–521

    Article  CAS  PubMed  Google Scholar 

  • Hong EP, Park JW, Suh J-G, Kim D-H (2015) Effect of interactions between genetic polymorphisms and cigarette smoking on plasma triglyceride levels in elderly Koreans: the Hallym Aging Study. Genes Genom 37:173–181

    Article  CAS  Google Scholar 

  • Jourquin J, Duncan D, Shi Z, Zhang B (2012) GLAD4U: deriving and prioritizing gene lists from PubMed literature. BMC Genom 13:S20

    Article  Google Scholar 

  • Khaitovich P, Enard W, Lachmann M, Pääbo S (2006) Evolution of primate gene expression. Nat Rev Genet 7:693–702

    Article  CAS  PubMed  Google Scholar 

  • Khrameeva EE et al (2014) Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans. Nat Commun 5:3584

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. doi: 10.1093/molbev/msw054

    PubMed Central  Google Scholar 

  • Kunarso G et al (2010) Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42:631–634

    Article  CAS  PubMed  Google Scholar 

  • Lambert J-C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-E, Eo J, Kim H-S (2015) Composition and evolutionary importance of transposable elements in humans and primates. Genes Genom 37:135–140

    Article  CAS  Google Scholar 

  • Li L-C, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18:1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Matharu NK, Ahanger SH (2015) Chromatin insulators and topological domains: adding new dimensions to 3D genome architecture. Genes 6:790–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh AM et al (2012) The apolipoprotein E (APOE) gene appears functionally monomorphic in chimpanzees (Pan troglodytes). PLoS ONE 7:e47760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller SE, Sahlender DA, Graham SC, Höning S, Robinson MS, Peden AA, Owen DJ (2011) The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell 147:1118–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG (2007) Recent and ongoing selection in the human genome. Nat Rev Genet 8:857–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD (2009) AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol 11:1399–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier J, Miron J, Picard C, Gormley P, Théroux L, Breitner J, Dea D (2014) Apolipoprotein E and lipid homeostasis in the etiology and treatment of sporadic Alzheimer’s disease. Neurobiol Aging 35:S3–S10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prüfer K et al (2012) The bonobo genome compared with the chimpanzee and human genomes. Nature 486:527–531

    PubMed  PubMed Central  Google Scholar 

  • Recillas-Targa F et al (2002) Position-effect protection and enhancer blocking by the chicken β-globin insulator are separable activities. Proc Natl Acad Sci 99:6883–6888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH (2013) The role of transposable elements in health and diseases of the central nervous system. J Neurosci 33:17577–17586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Román AC et al (2011) Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch. Genome Res 21:422–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronald J, Rajagopalan R, Ranchalis JE, Marshall JK, Hatsukami TS, Heagerty PJ, Jarvik GP (2009) Analysis of recently identified dyslipidemia alleles reveals two loci that contribute to risk for carotid artery disease. Lipids Health Dis 8:1

    Article  Google Scholar 

  • Ruitenberg A, Ott A, van Swieten JC, Hofman A, Breteler MM (2001) Incidence of dementia: does gender make a difference? Neurobiol Aging 22:575–580

    Article  CAS  PubMed  Google Scholar 

  • Scally A, Durbin R (2012) Revising the human mutation rate: implications for understanding human evolution. Nat Rev Genet 13:745–753

    Article  CAS  PubMed  Google Scholar 

  • Shih S-J, Allan C, Grehan S, Tse E, Moran C, Taylor JM (2000) Duplicated downstream enhancers control expression of the human apolipoprotein E gene in macrophages and adipose tissue. J Biol Chem 275:31567–31572

    Article  CAS  PubMed  Google Scholar 

  • Shin S-H, Choi SS (2015) Lengths of coding and noncoding regions of a gene correlate with gene essentiality and rates of evolution. Genes Genom 37:365–374

    Article  Google Scholar 

  • Smit AF, Riggs AD (1995) MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res 23:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Speir ML et al (2016) The UCSC Genome Browser database: 2016 update. Nucleic Acids Res 44:D717–D725

    Article  CAS  PubMed  Google Scholar 

  • Ujwal R et al (2008) The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci USA 105:17742–17747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bortle K, Nichols MH, Li L, Ong C-T, Takenaka N, Qin ZS, Corces VG (2014) Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol 15:1

    Article  Google Scholar 

  • Van Cauwenberghe C, Van Broeckhoven C, Sleegers K (2015) The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 18:421–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H-Y et al (2006) Rate of evolution in brain-expressed genes in humans and other primates. PLoS Biol 5:e13

    Article  PubMed Central  Google Scholar 

  • Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based gene set analysis toolkit (WebGestalt): update 2013. Nucleic acids Res 41:W77–W83

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y et al (2016) Structural basis for translocation of a biofilm-supporting exopolysaccharide across the bacterial outer membrane. J Biol Chem 291:10046–10057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams A, Flavell RA (2008) The role of CTCF in regulating nuclear organization. J Exp Med 205:747–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13:291–298

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Lu J, Liu B, Cui Q, Wang Y (2016) Primate-specific miR-603 is implicated in the risk and pathogenesis of Alzheimer’s disease. Aging 8:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao Z et al (2015) Central role for PICALM in amyloid-[beta] blood-brain barrier transcytosis and clearance. Nat Neurosci 18:978–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng P, Pennacchio LA, Le Goff W, Rubin EM, Smith JD (2004) Identification of a novel enhancer of brain expression near the apoE gene cluster by comparative genomics. Biochim Biophys Acta-Gene Struct Expr 1676:41–50

    Article  CAS  Google Scholar 

  • Zhu X, Lapthorn AJ, Ellis EM (2006) Crystal structure of mouse succinic semialdehyde reductase AKR7A5: structural basis for substrate specificity. BioChemistry 45:1562–1570

    Article  CAS  PubMed  Google Scholar 

  • Ziebarth JD, Bhattacharya A, Cui Y (2013) CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic acids Res 41:D188–D194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a 2-Year Research Grant from Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Ethics declarations

Conflict of interest

DHK declares that he has no conflicts of interest. J-AG declares that he has no conflicts of interest. AM declares that he has no conflicts of interest. KHK declares that he has no conflicts of interest. CWH declares that he has no conflicts of interest. SBJ declares that he has no conflicts of interest. H-SK declares that he has no conflicts of interest.

Ethical approval

This study was conducted in accordance with South Korea laws and the guidelines of the Kyoto University’s Primate Research Institute.

Additional information

Dong Hee Kim and Jeong-An Gim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.H., Gim, JA., Kim, K.H. et al. Alzheimer’s disease related genes during primate evolution. Genes Genom 39, 1183–1192 (2017). https://doi.org/10.1007/s13258-017-0584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-017-0584-x

Keywords

Navigation