Skip to main content
Log in

Comparative transcriptome analysis of differentially expressed genes between the curly and normal leaves of Cymbidium goeringii var. longibracteatum

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Normal and the spontaneous spirally rolled leaves of Cymbidium goeringii var. longibracteatum were used for RNA sequencing analyses using the Illumina paired-end sequencing technique to figure out the differently-expressed genes in two samples. About 5.65 and 4.82 Gb sequencing data of raw reads were obtained from 2 cDNA libraries of normal and the spirally rolled leaves respectively. After data filtering, quality checks and de novo assembly, a total of 48,935 unigenes with an average sequence length of 820 nt were generated. In addition, the transcriptome change in normal and the spirally rolled leaves was investigated. With non-redundant annotation, 219 differentially expressed genes (DEGs) are identified, with 147 up-regulated genes and 72 down-regulated genes. Out of these DEGs, 21 DEGs (9.59 %) were involved in cell wall modeling enzymes, such as expansin, xyloglucan endo-transglycosylase, pectate lyase, cell wall-associated hydrolase. Besides, other DEGs were predominantly classified as genes involved in transcription factor and signal sense and transduction signaling. This study presents the first comprehensive characterization of the leave transcriptomes of Cymbidium goeringii var. longibracteatum. This study not only gave us valuable sequence resources of this species, but also provided theoretical foundation for cultivar breeding of leaf mutation in C. goeringii var. longibracteatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Berná G, Robles P, Micol JL (1999) A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics 152:729–742

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Zha J, Liang X, Bu J, Wang M, Wang Z (2013) Sequencing and de novo assembly of the Asian clam (Corbicula fluminea) transcriptome using the Illumina GAIIx method. PLoS ONE 8:e79516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Mao Y, Liu H, Yu F, Li S, Yin T (2014) Transcriptome analysis of differentially expressed genes relevant to variegation in peach flowers. PLoS One 9:e90842

    Article  PubMed  PubMed Central  Google Scholar 

  • Conesa A, Götz S, García-Gómez J, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ, Durachko DM (1994) Autolysis and extension of isolated walls from growing cucumber hypocotyls. J Exp Bot 45:1711–1719

    CAS  PubMed  Google Scholar 

  • Cosgrove DJ, Li LC, Cho H-T, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansins. Plant Cell Physiol 43:1436–1444

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Moran Y, Levin JZ, Thompson DA, Ido A, Xian A, Lin F, Raktima R, Qiandong Z (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hew CS (2001) Ancient Chinese orchid cultivation: a fresh look at an age-old practice. Sci Hortic 87:1–10

    Article  Google Scholar 

  • Ichihashi Y, Horiguchi G, Gleissberg S, Tsukaya H (2010) The bHLH transcription factor SPATULA controls final leaf size in Arabidopsis thaliana. Plant Cell Physiol 51:252–261

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Im KH, Savka MA, Wu MJ, Dewitt NG, Shillito R, Binns AN (1998) Auxin-dependent cell expansion mediated by overexpressed auxin-binding protein 1. Science 282:1114–1117

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Lee JS, Park KW, Kim SS (2013) New cultivar ‘White Edge’ of leaf variegated Hosta minor. Korean J Plant Resources 26:516–518

    Article  Google Scholar 

  • Lee Y, Choi D, Kende H (2001) Expansins: ever-expanding numbers and functions. Curr Opin Plant Biol 4:527–532

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jones L, McQueen-Mason S (2003) Expansins and cell growth. Curr Opin Plant Biol 6:603–610

    Article  CAS  PubMed  Google Scholar 

  • Lomax J (2005) Get ready to GO! A biologist's guide to the gene ontology. Brief Bioinform 6:298–304

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Yang Z, Zhong B, Li Y, Xie R, Zhao F, Ling Y, He G (2007) Genetic analysis and fine mapping of a dynamic rolled leaf gene, RL10(t), in rice (Oryza sativa L.). Genome 50:811–817

    Article  CAS  PubMed  Google Scholar 

  • Mcqueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcqueen-Mason SJ, Fry SC, Durachko DM, Cosgrove DJ (1993) The relationship between xyloglucan endotransglycosylase and in vitro cell wall extension in cucumber hypocotyls. Planta 190:327–331

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Nishihara M, Yamada E, Saito M, Fujita K, Takahashi H, Nakatsuka T (2014) Molecular characterization of mutations in white-flowered torenia plants. BMC Plant Biol 14:1–13

    Article  Google Scholar 

  • Pérez-Pérez JM, Ponce MR, Micol JL (2001) ULTRACURVATA1, a SHAGGY-like Arabidopsis gene required for cell elongation. Int J Dev Biol 45:S51–S52

    Google Scholar 

  • Pérez-Pérez JM, MaR Ponce, Micol JL (2002) The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Dev Biol 242:161–173

    Article  PubMed  Google Scholar 

  • Qiu WM, Zhu AD, Yao W, Chai LJ, Ge XX, Deng XX, Guo WW (2012) Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray. BMC Genom 13:157

    Article  Google Scholar 

  • Robles P, Micol J (2001) Genome-wide linkage analysis of Arabidopsis genes required for leaf development. Mol Genet Genomics 266:12–19

    Article  CAS  PubMed  Google Scholar 

  • Sara Z, Alberto F, Enrico G, Luciano X, Marianna F, Giovanni M, Diana B, Mario P, Massimo D (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152:1787–1795

    Article  Google Scholar 

  • Schunmann PHD, Smith RC, Lang V, Matthews PR, Chandler PM (1997) Expression of XET-related genes and its relation to elongation in leaves of barley (Hordeum vulgare L.). Plant, Cell Environ 20:1439–1450

    Article  CAS  Google Scholar 

  • Shao YJ, Chen ZX, Zhang YF, Chen EH, Ding Cheng QI, Miao J, Pan XB (2005) One major QTL mapping and physical map construction for rolled leaf in rice. Acta Genet Sin 32:501–506 (in Chinese with English Abstract)

    CAS  PubMed  Google Scholar 

  • Singh JP, Arora RS, Dohare SR, Sengupta K (1970) A spontaneous mutant for flower colour and shape in a white flowering dahlia. Euphytica 19:261–262

    Article  Google Scholar 

  • Tasaki K, Nakatsuka A, Cheon KS, Kobayashi N (2015) Inheritance of the narrow leaf mutation in traditional Japanese evergreen azaleas. Euphytica 206:649–656

    Article  CAS  Google Scholar 

  • Wang B, Li Z, Yu C (2005) Progress on orchid breeding Study. Acta Hort Sin 32:551–556

    CAS  Google Scholar 

  • Wang HZ, Wu ZX, Lu JJ, Shi NN, Zhao Y, Zhang ZT, Liu JJ (2009) Molecular diversity and relationships among Cymbidium goeringii cultivars based on inter-simple sequence repeat (ISSR) markers. Genetica 136:391–399

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Burklew C, Yang Y, Liu M, Xiao P, Zhang B, Qiu D (2012) De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta 236:101–113

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah B (2000) Molecular and biochemical evidence for the involvement of calcium/calmodulin in auxin action. J Biol Chem 275:3137

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li D, Liu X, Ji C, Hao L, Zhao X, Li X, Chen C, Cheng Z, Zhu L (2014) OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.). BMC Plant Biol 14:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youn-Sung K, Kim S-G, Park J-E, Park H-Y (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18:3132–3144

    Article  Google Scholar 

  • Zhang C, Wang Y, Fu J, Dong L, Gao S, Du D (2014a) Transcriptomic analysis of cut tree peony with glucose supply using the RNA-Seq technique. Plant Cell Rep 33:111–129

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Wang XJ, Wu JX, Chen SY, Chen H, Chai LJ, Yi HL (2014b) Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening. PLoS ONE 9:e116056

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang Y, Fu J, Bao Z, Zhao H (2016) Transcriptomic analysis and carotenogenic gene expression related to petal coloration in Osmanthus fragrans ‘Yanhong Gui’. Trees. doi:10.1007/s00468-016-1359-8

    Google Scholar 

  • Zhao D, Jiang Y, Ning C, Meng J, Lin S, Ding W, Tao J (2014) Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.). BMC Genom 15:689

    Article  Google Scholar 

  • Zhou H-G, Wang W-T, Qiao Z-Q, Wang Y-J, Wang H-C, Wang F-L, Huang Z-F, He Z-M (2015) A new chrysanthemum cultivar ‘Binfen’. Acta Hort Sin 42:201–202 (in Chinese with English Abstract)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Flower Breeding of New Varieties Project for Zhejiang Science and Technology Department (Grant No. 2009C12087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Fu.

Ethics declarations

Conflict of interest

Huijuan Ning declares that she has no conflict of interest, Chao Zhang declares that he has no conflict of interest, Jianxin Fu declares that she has no conflict of interest, Yirong Fan declares that he has no conflict of interest.

Ethical Approval

The article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, H., Zhang, C., Fu, J. et al. Comparative transcriptome analysis of differentially expressed genes between the curly and normal leaves of Cymbidium goeringii var. longibracteatum . Genes Genom 38, 985–998 (2016). https://doi.org/10.1007/s13258-016-0443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0443-1

Keywords

Navigation