Skip to main content
Log in

Characterization of MSTN/GDF11 gene from shrimp Macrobrachium nipponense and its expression profiles during molt cycle and after eyestalk ablation

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Myostatin (MSTN), also known as the growth differentiation factor-8 (GDF-8), belongs to the transforming growth factor-β superfamily. MSTN is a negative regulator of muscle development in vertebrates. However, the transcriptional regulation of MSTN in freshwater crustaceans is still unclear. In this study, a cDNA encoding for MSTN/GDF11 (Mn-MSTN/GDF11) was cloned from the oriental freshwater shrimp, Macrobrachium nipponense. The full-length cDNA sequence of Mn-MSTN/GDF11 was composed of 1733 nucleotides, including a 5′ UTR of 119 nucleotides, an open read frame of 1359 nucleotides, and a 3′ UTR of 255 nucleotides. The predicted peptide of Mn-MSTN/GDF11 has 452 amino acids with the conserved RXXR cleavage site and nine cysteines. Tissue-specific expression pattern showed that Mn-MSTN/GDF11 is mainly expressed in abdominal muscle. During the course of embryonic development, expression level of Mn-MSTN/GDF11 could be detected after gastrul stage, and reached at the highest level at embryonized-zoea stage. During molt cycle, expression level of Mn-MSTN/GDF11 mRNA was up-regulated significantly at early postmoult stage, but down-regulated gradually in the following molt stages. In the period of 14 days after eyestalk ablation, Mn-MSTN/GDF11 transcripts were significantly decreased in abdominal muscle and heart, but increased in thoracic muscle. The results of this study indicated that Mn-MSTN/GDF11 may play a role in molt cycle and be regulated by hormone secreted in eyestalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chang ES, Mykles DL (2011) Regulation of crustacean molting: a review and our perspectives. Gen Comp Endocrinol 172:323–330

    Article  CAS  PubMed  Google Scholar 

  • Covi JA, Bader BD, Chang ES, Mykles DL (2010) Molt cycle regulation of protein synthesis in skeletel muscle of the blackback land crad, Gecarcinus lateralis, and the differential expression of a myostatin-like factor during atrophy induced by molting or unweighting. J Exp Biol 213:172–183

  • Covi JA, Kim HW, Mykles DL (2008) Expression of alternatively spliced transcripts for a myostatin-like protein in the blackback land crab, Gecarcinus lateralis. Comp Biochem Phys A 150:423–430

    Article  Google Scholar 

  • De santis C, Jerry DR (2007) Candidate growth genes in finfish-where should we be looking? Aquaculture 272:22–38

    Article  Google Scholar 

  • De Santis C, Wade NM, Jerry DR, Preston NP, Glencross BD, Sellars MJ (2011) Growing backwards: an inverted role for the shrimp ortholog of vertebrate myostatin and GDF11. J Exp Biol 214:2671–2677

    Article  PubMed  Google Scholar 

  • Feng JB, Li JL, Cheng X (2008) Research progress on germplasm resource exploitation and protection of Macrobrachium nipponense. J Shanghai Fish Univ 17:371–376

    Google Scholar 

  • Gabillard JC, Biga PR, Rescan PY, Seiliez I (2013) Revisiting the paradigm of myostatin in vertebrates: insights from fishes. Gen Comp Endocrinol 194:45–54

    Article  CAS  PubMed  Google Scholar 

  • Grobet L, Martin L, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74

    Article  CAS  PubMed  Google Scholar 

  • Hadjipavlou G, Matika O, Clop A, Bishop SC (2008) Two single nucleotide polymorphisms in the myostatin (GDF8) gene have significant association with muscle depth of commercial Charollais sheep. Anim Genet 39:346–353

    Article  CAS  PubMed  Google Scholar 

  • Haj EL, Clake SR, Harrison P, Chang ES (1996) In vivo muscle protein synthesis rates in the Americam lobster Homarus americanus during the moult cycle and in response to 20-hydroxyecdysone. J Exp Biol 199:579–585

  • Hu XL, Guo HH, He Y, Wang SA, Zhang LL, Wang S, Huang XT, Roy SW, Lu W, Hu JJ, Bao ZM (2010) Molecular characterization of myostatin gene from Zhikong scallop Chlamys farreri (Jones et Preston 1904). Genes Genet Syst 85:207–218

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Mykles DL, Goetz FW, Roberts SB (2004) Characterization of a myostatin-like gene from the bay scallop, Argopecten irradians. Biochim Biophys Acta-Gene Struct Expr 1679:174–179

    Article  CAS  Google Scholar 

  • Kim KS, Jeon JM, Kim HW (2009) A myostatin-like gene expressed highly in the muscle tissue of Chinese mitten crab, Eriocheir sinensis. J Fish Aquat Sci 12:185–193

    CAS  Google Scholar 

  • Kim KS, Kim YJ, Jeon JM, Kang YS, Kang YS, Oh CW, Kim HW (2010) Molecular characterization of myostatin-like genes expressed highly in the muscle tissue from Morotoge shrimp, Pandalopsis japonica. Aquac Res 41:862–871

    Article  Google Scholar 

  • Ko CF, Chiou TT, Chen TT, Wu JL, Chen JC, Lu JK (2007) Molecular cloning of myostatin gene and characterization of tissue-specific and developmental stage-specific expression of the gene in orange spotted grouper, Epinephelus coioides. Mar Biotechnol 9:20–32

    Article  CAS  PubMed  Google Scholar 

  • Lachaise F, Loux A, Hubt M, Lafont R (1993) The molting gland of crustaceans: localization, activity and endocrine control (a review). J Crustac Biol 13:198–234

    Article  Google Scholar 

  • Lee SJ (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20:61–86

    Article  CAS  PubMed  Google Scholar 

  • Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98:9306–9311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee JH, Momani J, Kim YM, Kang CK, Choi JH, Baek HJ, Kim HW (2014) Effective RNA-silencing strategy of Lv-MSTN/GDF11 gene and its effects on the growth in shrimp, Litopenaeus vannamei. Comp Biochem Physiol B 179:9–16

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lo P, Frasch M (1999) Sequence and expression of myoglianin, a novel Drosophila gene of the TGF-beta superfamily. Mech Dev 86:171–175

    Article  CAS  PubMed  Google Scholar 

  • Longmuir E (1983) Setal development, moult-staging and ecdysis in the banana prawn Penaeus merguiensis. Mar Biol 77:183–190

    Article  Google Scholar 

  • MacLea KS, Covi JA, Kim HW, Chao E, Medler S, Chang ES, Mykles DL (2010) Myostatin from the American lobster, Homarus americanus: cloning and effects of molting on expression in skeletal muscles. Comp Biochem Physiol A 157:328–337

    Article  Google Scholar 

  • Matsakas A, Patel K (2009) Skeletal muscle fibre plasticity in response to selected environmental and physiological stimuli. Histol Histopathol 24:611–629

    PubMed  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997a) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997b) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Proc Natl Acad Sci USA 94:12457–12461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1999) Regulation of anterior posterior patterning of the axial skeleton by growth differentiation factor 11. Nat Genet 22:260–264

    Article  CAS  PubMed  Google Scholar 

  • Medeiros EF, Phelps MP, Fuentes FD, Bradley TM (2009) Overexpression of follistatin in trout stimulates increased muscling. Am J Physiol-Regul Integr Comp Physiol 297:R235–R242

    Article  CAS  PubMed  Google Scholar 

  • Medler S, Brown KJ, Chang ES, Mykles DL (2005) Eyestalk ablation has little effect on actin and myosin heavy chain gene expression in adult lobster skeletal muscles. Biol Bull 208:127–137

    Article  CAS  PubMed  Google Scholar 

  • Muller Y, Ammar D, Nazari E (2004) Embryonic development of four species of palaemonid prawns (Crustacea: Decapod) prenaupliar, naupliar and postnaupliar periods. Reva Bras Zool 21(1):27–32

    Article  Google Scholar 

  • Mykles DL (2001) Interaction between limb regenertion and molting in decapod crustaceans. Am Zool 41:399–406

    Google Scholar 

  • Nunez-Acuna G, Gallardo-Escarate C (2014) The myostatin gene of Mytilus chilensis evidences a high level of polymorphism and ubiquitous transcript expression. Gene 536:207–212

    Article  CAS  PubMed  Google Scholar 

  • Qian ZY, Mi X, Wang XZ, He SL, Liu YJ, Hou FJ, Liu Q, Liu XL (2013) cDNA cloning and expression analysis of myostatin/GDF11 in shrimp, Litopenaeus vannamei. Comp Biochem Physiol A 165:30–39

    Article  CAS  Google Scholar 

  • Rodgers BD, Garikipati DK (2008) Clinical, agricultural, and evolutionary biology of myostatin: a comparative review. Endocr Rev 29:513–534

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodgers BD, Weber GM, Sullivan CV, Levine MA (2001) Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Endocrinology 142:1412–1418

    CAS  PubMed  Google Scholar 

  • Saina M, Technau U (2009) Characterization of myostatin/gdf8/11 in the Starlet Sea Anemone Nematostella vectensis. J Exp Zool B 312B:780–788

    Article  Google Scholar 

  • Sawatari E, Seki R, Adachi T, Hashimoto H, Uji S, Wakamatsu Y, Nakata T, Kinoshita M (2010) Overexpression of the dominant-negative form of myostatin results in doubling of muscle-fiber number in transgenic medaka (Oryzias latipes). Comp Biochem Physiol A 155:183–189

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL (2003) Autoregulation of neurogenesis by GDF11. Neuron 37:197–207

    Article  CAS  PubMed  Google Scholar 

  • Xing F, Tan XG, Zhang PJ, Ma JK, Zhang YQ, Xu P, Xu YL (2007) Characterization of amphioxus GDF8/11 gene, an archetype of vertebrate MSTN and GDF11. Dev Genes Evol 217:549–554

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wu G, Zohar Y, Du SJ (2003) Analysis of myostatin gene structure, expression and function in zebrafish. J Exp Biol 206:4067–4079

    Article  CAS  PubMed  Google Scholar 

  • Xue LY, Qian KX, Qian HQ, Li L, Yang QY, Li MY (2006) Molecular cloning and characterization of the myostatin gene in croceine croaker, Pseudosciaena crocea. Mol Biol Rep 33:129–136

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Public Project of Zhejiang Province, P. R. China (No. 2013C32068) and the Foundation of Zhejiang Education Committee of China (Y201225243).

Conflict of interest

The authors declare no conflict of interest in the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenying Shen.

Additional information

Wenying Shen and Gang Ren have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Ren, G., Zhu, Y. et al. Characterization of MSTN/GDF11 gene from shrimp Macrobrachium nipponense and its expression profiles during molt cycle and after eyestalk ablation. Genes Genom 37, 441–449 (2015). https://doi.org/10.1007/s13258-015-0273-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-015-0273-6

Keywords

Navigation