Skip to main content
Log in

Evolutional and functional analysis of four microRNAs derived from transposable elements

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) are interspersed in the host genomic regions, and induce various effects to the host. Recent study shows TE sequences can provide microRNA (miRNA) sequences which have a crucial role in the organisms by silencing target mRNAs. In this study, 14 TE-derived miRNAs were identified by overlapping >50 % with expressed sequence tag. Among them, miR-330, miR-648, miR-1254, and miR-1825 were examined regarding their expression patterns and evolutionary conservation in various species. MiR-330 and miR-648 were highly expressed in the bone marrow and cerebellum tissues, while miR-1825 showed high expression in the fetal liver tissue. Additionally, MiR-1254 showed dominant expression in the skeletal muscle. These TE-derived miRNAs showed an inhibitory effect on the expression of their target genes, MLL2 and ARHGEF12. These findings confirmed that TEs play important roles to regulate gene expression by providing miRNA sequences and they may contribute to the evolution of biological complexity in human genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, Elste JE, Gregoire NS, Kim JA, Koehler WW et al (2011) Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elem 1:8–17

    Article  Google Scholar 

  • Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13:651–658

    Article  CAS  PubMed  Google Scholar 

  • Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    Article  CAS  PubMed  Google Scholar 

  • Dhar S, Hicks C, Levenson AS (2011) Resveratrol and prostate cancer: promising role for microRNAs. Mol Nutr Food Res 55:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Domansky AN, Kopantzev EP, Snezhkov EV, Lebedev YB, Leib-Mosch C, Sverdlov ED (2000) Solitary HERV-K LTRs possess bi-directional promoter activity and contain a negative regulatory element in the U5 region. FEBS Lett 472:191–195

    Article  CAS  PubMed  Google Scholar 

  • Foss KM, Sima C, Ugolini D, Neri M, Allen KE, Weiss GJ (2011) miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol 6:482–488

    Article  PubMed  Google Scholar 

  • Haj-Ahmad TA, Abdalla MA, Haj-Ahmad Y (2014) Potential urinary miRNA biomarker candidates for the accurate detection of prostate cancer among benign prostatic hyperplasia patients. J Cancer 5:182–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu HY, Guo S, Xi J, Yan Z, Fu N, Zhang X, Menzel C, Liang H, Yang H, Zhao M et al (2011) MicroRNA expression and regulation in human, chimpanzee, and macaque brains. PLoS Genet 7:e1002327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    Article  CAS  PubMed  Google Scholar 

  • Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355

    Article  CAS  PubMed  Google Scholar 

  • Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99

    Article  PubMed  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  CAS  PubMed  Google Scholar 

  • Kozeretska IA, Demydov SV, Ostapchenko LI (2011) Mobile genetic elements and cancer. From mutations to gene therapy. Exp Oncol 33:198–205

    CAS  PubMed  Google Scholar 

  • Kreth S, Limbeck E, Hinske LC, Schutz SV, Thon N, Hoefig K, Egensperger R, Kreth FW (2013) In human glioblastomas transcript elongation by alternative polyadenylation and miRNA targeting is a potent mechanism of MGMT silencing. Acta Neuropathol 125:671–681

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21:4663–4670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT, Goan YG, Lu PJ (2009) MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 28:3360–3370

    Article  CAS  PubMed  Google Scholar 

  • Levin HL, Moran JV (2011) Dynamic interactions between transposable elements and their hosts. Nat Rev Genet 12:615–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhu X, Xu W, Wang D, Yan J (2013) miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42. Biochem Biophys Res Commun 431:560–565

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, Davidson BL (2010) Structure and activity of putative intronic miRNA promoters. RNA 16:495–505

    Article  PubMed Central  PubMed  Google Scholar 

  • Mulrane L, McGee SF, Gallagher WM, O’Connor DP (2013) miRNA dysregulation in breast cancer. Cancer Res 73:6554–6562

    Article  CAS  PubMed  Google Scholar 

  • Piriyapongsa J, Jordan IK (2007) A family of human microRNA genes from miniature inverted-repeat transposable elements. PLoS ONE 2:e203

    Article  PubMed Central  PubMed  Google Scholar 

  • Piriyapongsa J, Marino-Ramirez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ruda VM, Akopov SB, Trubetskoy DO, Manuylov NL, Vetchinova AS, Zavalova LL, Nikolaev LG, Sverdlov ED (2004) Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR. Virus Res 104:11–16

    Article  CAS  PubMed  Google Scholar 

  • Sin HS, Huh JW, Kim DS, Kang DW, Min DS, Kim TH, Ha HS, Kim HH, Lee SY, Kim HS (2006) Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells. Arch Virol 151:1985–1994

    Article  CAS  PubMed  Google Scholar 

  • Smalheiser NR (2003) EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol 4:403

    Article  PubMed Central  PubMed  Google Scholar 

  • Smalheiser NR, Torvik VI (2005) Mammalian microRNAs derived from genomic repeats. Trends Genet 21:322–326

    Article  CAS  PubMed  Google Scholar 

  • Somel M, Liu X, Tang L, Yan Z, Hu H, Guo S, Jiang X, Zhang X, Xu G, Xie G et al (2011) MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates. PLoS Biol 9:e1001214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang JS, Lai EC (2010) Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle 9:4455–4460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan Z, Sun X, Jiang D, Ding Y, Lu Z, Gong L, Liu H, Xie J (2010) Origin and evolution of a placental-specific microRNA family in the human genome. BMC Evol Biol 10:346

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu Z, Zhang X, Wang G, Zheng H (2014) Role of microRNAs in hepatocellular carcinoma. Hepat Mon 148:e18672

    Google Scholar 

Download references

Acknowledgments

The present research was conducted by the research fund of Dankook University in 2014.

Conflict of interest

The author declares that there is no conflict of interests exists in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Ji Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13258_2014_255_MOESM1_ESM.pptx

Fig. S1 Prediction of RNA secondary structure of chimeric ESTs overlapped with four TE-derived miRNAs. (a) T54717.1 derived miR-330, (b) CV312382.1 derived miR-648, (c) BX111415.1 derived miR-1254, and (d) BF568983.1 derived miR-1825. Green and yellow line indicate precursor miRNA and mature miRNA sequences, respectively. (PPTX 479 kb)

13258_2014_255_MOESM2_ESM.pptx

Fig. S2 Secondary structure of potential miRNAs derived from paralogs of mir-1254. Predicted miRNAs (paralogs) derived from AluJr (miR-1254) and their secondary structures were predicted by using miRNAFinder. Left (blue) and right (red) lines indicate predicted mature miRNAs. (PPTX 287 kb)

13258_2014_255_MOESM3_ESM.pptx

Fig. S3 Complementary sequences between 3′UTR of target gene and mature miRNA. (a) The MLL2 gene targeted by miR-330 and miR-1254. (b) The ARHGEF12 gene targeted by miR-648 and miR-1825. Using RNAhybrid, secondary structure and free energy of hybridization were predicted (Rehmsmeier et al. 2004). Grey bar on secondary structure indicates seed sequence. (PPTX 48 kb)

13258_2014_255_MOESM4_ESM.pptx

Fig. S4 Sequence of seed region in target gene. Through sequencing analysis, seed region of TE-derived miRNAs in the MLL2 (a) and ARHGEF12 genes (b) were confirmed. (PPTX 117 kb)

Supplementary material 5 (XLSX 45 kb)

Supplementary material 6 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YJ. Evolutional and functional analysis of four microRNAs derived from transposable elements. Genes Genom 37, 161–171 (2015). https://doi.org/10.1007/s13258-014-0255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0255-0

Keywords

Navigation