Skip to main content
Log in

Abstract

As changes to the environment, both human and non-human made, continue to occur, the assumption of stationarity in flood frequency analysis is seldom met. A proposed method for estimating the 1% chance flood, i.e., Q\(_{100}\) of a flood gauge’s annual peak streamflows, using robust local likelihood estimation is developed. Simulations indicate that when a flood series seems to be from a more mixed population of values, often due to extreme snowmelt or tropical storms in a given flood year, robust local likelihood estimation is more effective at estimating the 1% chance flood than local likelihood estimation. Annual peak streamflows from the Congaree River at Columbia, South Carolina, the Illinois River at Marseilles, Illinois, and the Winooski River at Montpelier, Vermont are used as examples on how to apply the robust local likelihood method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. https://nwis.waterdata.usgs.gov/sc/nwis/peak/?site_no=02169500 &agency_cd=USGS &

  2. https://nwis.waterdata.usgs.gov/il/nwis/peak/?site_no=05543500 &agency_cd=USGS &

  3. https://nwis.waterdata.usgs.gov/vt/nwis/peak/?site_no=04286000 &agency_cd=USGS &

References

  • Alila Y, Mtiraoui A (2002) Implications of heterogeneous flood-frequency distributions on traditional stream-discharge prediction techniques. Hydrol Process 16:1065–1084

    Article  Google Scholar 

  • Box GEP, Meyer RD (1986) An analysis for unreplicated fractional factorials. Technometrics 28:11–18

    Article  MathSciNet  Google Scholar 

  • Chavez-Demoulin V, Davison AC (2005) Generalized additive modelling of sample extremes. J R Stat Soc Ser C (Appl Stat) 54:207–222

    Article  MathSciNet  Google Scholar 

  • Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836. https://www.tandfonline.com/doi/abs/10.1080/01621459.1979.10481038

  • Cox DR, Isham VS, Northrop PJ (2002) Floods: Some probabilistic and statistical approaches. Philos Trans Math Phys Eng Sci 360(1796):1389–1408

    Article  Google Scholar 

  • Cunderlik JM, Burn DH (2003) Non-stationary pooled flood frequency analysis. J Hydrol 276:210–223

    Article  Google Scholar 

  • Cunnane C (1985) Factors affecting choice of distributions for flood series. Hydrol Sci J 30(1):25–36

    Article  Google Scholar 

  • Davison AC, Ramesh NI (2000) Local likelihood smoothing of sample extremes. J R Stat Soc Ser B (Stat Methodol) 62:191–208

    Article  MathSciNet  Google Scholar 

  • Davison AC, Smith RL (1990) Models for exceedances over high thresholds. J R Stat Soc Ser B (Methodol ) 52(3):393–425

    MathSciNet  Google Scholar 

  • Diehl T, Potter KW (1987) Mixed flood distribution in Wisconsin. In: Singh VP (ed) Hydrologic frequency modeling. D. Reidel Publishing Company, Boston, Massachusetts, pp 213–226

  • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43:W03410. https://doi.org/10.1029/2005WR004545

    Article  Google Scholar 

  • Grego JM, Yates PA (2010) Point and standard error estimation for quantiles of mixed flood distributions. J Hydrol 391:289–301

    Article  Google Scholar 

  • Grego JM, Yates PA, Mai K (2015) Standard error estimation for mixed flood distributions with historic maxima. Environmetrics 26(3):229–242

    Article  MathSciNet  Google Scholar 

  • Hall P, Tajvidi N (2000) Nonparametric analysis of temporal trend when fitting parametric model to extreme-value data. Stat Sci 15(2):153–167

    Article  MathSciNet  Google Scholar 

  • Hirschboeck KK (1987) Hydrologically-defined mixed distributions in partial duration flood series. In: Singh VP (ed) Hydrologic frequency modeling. D. Reidel Publishing Company, Boston, Massachusetts, pp 199–212

  • Jóhannesson ÁV, Siegert S, Huser R, Bakka H, Hrafnkelsson B (2022) Approximate Bayesian inference for analysis of spatiotemporal flood frequency data. Ann Appl Stat 16(2):905–935

    Article  MathSciNet  Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25:1287–1304

    Article  Google Scholar 

  • Khaliq MN, Ouarda TBMJ, Ondo J-C, Gachon P, Bobée B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review. J Hydrol 329:534–552

    Article  Google Scholar 

  • Koutsoyiannis D, Montanari A (2015) Negligent killing of scientific concepts: the stationarity case. Hydrol Sci J 60(7–8):1174–1183

    Article  Google Scholar 

  • Leclerc M, Ouarda TBMJ (2007) Non-stationary regional flood frequency analysis at ungauged sites. J Hydrol 343:254–265

    Article  Google Scholar 

  • López J, Francés F (2013) Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates. Hydro Earth Syst Sci 17:3189–3203

    Article  Google Scholar 

  • Machado MJ, Botero BA, López J, Francés F, Díez-Herrero A, Benito G (2015) Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrol Earth Syst Sci 19:2561–2576

    Article  Google Scholar 

  • Meilijson I (1989) A fast improvement to the EM algorithm on its own terms. J R Stat Soc Ser B (Methodol) 51(1):127–138

    MathSciNet  Google Scholar 

  • Milly PCD, Betancourt J, Falkenmark M, Hirsch RM, Kundzewicz ZW, Lettenmaier DP, Stouffer RJ (2008) Stationarity is dead: Whither water management? Science 319(1):573–574

    Article  Google Scholar 

  • Nasri B, El Adlouni S, Ouarda TBMJ (2013) Bayesian estimation for GEV-B-spline model. Open J Stat 3:118–128

    Article  Google Scholar 

  • Qu C, Li J, Yan L, Yan P, Cheng F, Lu D (2020) Non-stationary flood frequency analysis using cubic B-spline-based GAMLSS model. Water 12:1867

    Article  Google Scholar 

  • Ramesh NI, Davison AC (2002) Local models for exploratory analysis of hydrological extremes. J Hydrol 256:106–119

    Article  Google Scholar 

  • Renard B, Lang M, Bois P (2006) Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data. Stochast Environ Res Risk Assess 21(2):97–112

    Article  Google Scholar 

  • Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. J R Stat Soc Ser C (Appl Stat) 54:507–554

    Article  MathSciNet  Google Scholar 

  • Sankarasubramanian A, Lall U (2003) Flood quantiles in a changing climate: seasonal forecasts and causal relations. Water Resour Res 39(5):1134

    Article  Google Scholar 

  • Serinaldi F, Kilsby CG (2015) Stationarity is undead: uncertainty dominates the distribution of extremes. Adv Water Resour 77:17–36

    Article  Google Scholar 

  • Singh KP (1968) Hydrologic distributions resulting from mixed population and their computer simulation In: Proceedings of the international symposium of the use of analog and digital computers in hydrology. International Association of Scientific Hydrology, pp 671–681

  • Singh KP (1987) A versatile flood frequency methodology. Water Int 12(3):139–145

    Article  Google Scholar 

  • Singh KP, Sinclair RA (1972) Two-distribution method for flood frequency analysis. Water Resour Res 7(5):1144–1150

    Google Scholar 

  • Slater LJ, Anderson B, Buechel M, Dadson S, Han S, Harrigan S, Kelder T, Kowal K, Lees T, Matthews T, Murphy C, Wilby RL (2021) Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management. Hydrol Earth Syst Sci 25(7):3897–3935

    Article  Google Scholar 

  • Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modeling II. Weighted least squares estimation. J Hydrol, pp 143–151

  • Strupczewski WG, Singh VP, Feluch W (2001) Non-stationary approach to at-site flood frequency modeling I. Maximum likelihood estimation. J Hydrol 248:123–142

    Article  Google Scholar 

  • Strupczewski WG, Singh VP, Mitosek HT (2001) Non-stationary approach to at-site flood frequency modeling III. Flood analysis of Polish rivers. J Hydrol 248:152–167

    Article  Google Scholar 

  • Tarasova L, Merz R, Kiss A, Basso S, Blöschl G, Merz B, Viglione A, Plötner S, Guse B, Schumann A, Fischer S, Ahrens B, Anwar F, Bárdossy A, Bühler P, Haberlandt U, Kreibich H, Krug A, Lun D, Müller-Thomy H, Pidoto R, Primo C, Seidel J, Vorogushyn S, Wietzke L (2019) Causative classification of river flood events. WIREs Water 6(4):e1353

    Article  Google Scholar 

  • Villarini G, Smith JA, Serinaldi F, Bales J, Bates PD, Krajewski WF (2009) Flood frequency analysis for nonstationary annual peak records in an urban drainage basin. Adv Water Resour 32:1255–1266

    Article  Google Scholar 

  • Vogel RM, Yaindl C, Walter M (2011) Nonstationarity: flood magnification and recurrence reduction factors in the United States. J Am Water Resour Assoc 47(3):464–474

    Article  Google Scholar 

  • Waylen P, Woo MK (1982) Prediction of annual floods generated by mixed processes. Water Resour Res 18(4):1283–1286

    Article  Google Scholar 

  • Waylen P, Woo MK (1983) Annual floods in South Western British Columbia, Canada. J Hydrol 62:95–105

    Article  Google Scholar 

Download references

Funding

The authors of this paper received no funding nor had any conflict of interest while developing the work for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Yates.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We need to derive and evaluate the Jacobian at \(\left\{ t_i\right\} \) in order to construct a sandwich estimator for the covariance matrices of their respective maximum likelihood estimates. The density function \(f(\cdot ;\cdot )\) for each component can be written as:

$$\begin{aligned}f\left( y_{i};{\varvec{\Theta }}_{t}\right) = \frac{1}{\tau _t}k_{1}\left( y_{i}\right) ^{\delta _{t}+1}e^{-k_{1}\left( y_{i}\right) } \end{aligned}$$

where

$$\begin{aligned}k_{1}\left( y_{i}\right) = \left[ 1+\delta _{t}\left( \frac{y_{i}-\eta _t}{\tau _t}\right) \right] ^{-1/\delta _{t}}. \end{aligned}$$

The log of the density can be written as:

$$\begin{aligned} \log f\left( y_{i}|{\varvec{\Theta }}_{t}\right) = -\log \tau _t +\left( \delta _{t}+1\right) \log k_{1}\left( y_{i}\right) -k_{1}\left( y_{i}\right) \end{aligned}$$

The key in the following calculations is \(k_{1}\); of particular utility are the following results:

$$\begin{aligned} \frac{\partial }{\partial \beta _{0,t}}k_{1}\left( y_{i}\right)= & {} \frac{k_{1}\left( y_{i}\right) }{\tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) } \\ \frac{\partial }{\partial \beta _{1,t}}k_{1}\left( y_{i}\right)= & {} \frac{\left( i-nt\right) k_{1}\left( y_{i}\right) }{\tau _{it} +\delta _{t}\left( y_{i}-\eta _{it} \right) } \\ \frac{\partial }{\partial \gamma _{0,t}}k_{1}\left( y_{i}\right)= & {} \frac{\left( y_{i}-\eta _{it}\right) k_{1}\left( y_{i}\right) }{\tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) } \\ \frac{\partial }{\partial \gamma _{1,t}}k_{1}\left( y_{i}\right)= & {} \frac{\left( i-nt\right) \left( y_{i}-\eta _{it}\right) k_{1}\left( y_{i}\right) }{\tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) } \\ \frac{\partial }{\partial \delta _{t}}k_{1}\left( y_{i}\right)= & {} -\frac{k_{1}\left( y_{i}\right) }{\delta _t}\left\{ \log k_{1}\left( y_{i}\right) +\frac{y_{i}-\eta _{it}}{\left[ \tau _{it}+\delta _t\left( y_{i}-\eta _{it}\right) \right] }\right\} . \end{aligned}$$

Using the results derived for \(k_1\) above, the components of the score vector are given below.

$$\begin{aligned} \frac{\partial }{\partial \beta _{0,t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{\delta _{t}+1-k_{1}\left( y_{i}\right) }{\tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) } \\ \frac{\partial }{\partial \beta _{1,t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{\left( i-nt\right) \left[ \delta _{t}+1-k_{1}\left( y_{i}\right) \right] }{\tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) } \\ \frac{\partial }{\partial \gamma _{0,t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} -1+ \frac{\left[ y_{i}-\eta _{it}\right] \left[ \delta _{t}+1-k_{1}\left( y_{i}\right) \right] }{\tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) } \\ \frac{\partial }{\partial \gamma _{1,t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} -\left( i-nt\right) + \frac{\left( i-nt\right) \left[ y_{i}-\eta _{it}\right] \left[ \delta _{t}+1-k_{1}\left( y_{i}\right) \right] }{\tau _{it}+\delta _{t}\left[ y_{i}-\eta _{it}\right] } \\ \frac{\partial }{\partial \delta _{t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \log k_{1}\left( y_{i}\right) - \frac{\delta _{t}+1-k_{1}\left( y_{i} \right) }{\delta _{t}} \left[ \log k_{1}\left( y_{i}\right) + \frac{y_{i}-\eta _{it}}{\tau _{it}+\delta _t \left( y_{i}-\eta _{it}\right) } \right] . \end{aligned}$$

These formulas, evaluated at \(\left\{ t_i\right\} \), can be used to construct the score \(\frac{\partial }{\partial {\varvec{\Theta }}_{i}}\log l({\varvec{\Theta }}_{i}) = {\varvec{s}}_i\) for each observation i; the total score can be computed as \({\varvec{S}}\left( {\varvec{\Theta }}\right) = \sum _{i=1}^n {\varvec{s}}_i \).

The components summed to comprise the elements of J(t) for \(f_{1}\left( y_{i}|{\varvec{\Theta }}_{t}\right) \), the observed information matrix for the local linear model, can be written as:

$$\begin{aligned} \frac{\partial ^2}{\partial \beta ^2_{0,t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{\left( \delta _{t}+1\right) \left( \delta _{t}-k_{1}\left( y_{i}\right) \right) }{\left[ \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2} \\ \frac{\partial ^2}{\partial \beta _{0,t}\partial \beta _{1,t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{\left( i-nt \right) \left( \delta _{t}+1\right) \left( \delta _{t}-k_{1}\left( y_{i}\right) \right) }{\left[ \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2} \\ \frac{\partial ^2}{\partial \beta _{0,t}\partial \gamma _{0,t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{-\left( y_{i}-\eta _{it} \right) - \left( \delta _{t}+1-k_{1}\left( y_{i}\right) \right) \tau _{it}}{\left[ \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2} \\ \frac{\partial ^2}{\partial \beta _{0,t}\partial \delta _{t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{\left( \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right) \left( 1 - k_1'\right) - \left( \delta _t + 1 - k_{1}\left( y_{i}\right) \right) \left( y_{i}-\eta _{it} \right) }{\left[ \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2} \\ \frac{\partial ^2}{\partial \beta _{1,t}^2}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{\left( i-nt \right) ^2\left( \delta _{t}+1\right) \left( \delta _{t}-k_{1}\left( y_{i}\right) \right) }{\left[ \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2} \\ \frac{\partial ^2}{\partial \beta _{1,t}\partial \gamma _{0,t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{-\left( i-nt \right) \left[ \left( y_{i}-\eta _{it} \right) + \left( \delta _{t}+1-k_{1}\left( y_{i}\right) \right) \tau _{it}\right] }{\left[ \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2} \\ \frac{\partial ^2}{\partial \beta _{1,t}\partial \delta _{t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{\left( i-nt \right) \left\{ \left( \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right) \left( 1 - k_1' \right) - \left( \delta _t + 1 - k_{1}\left( y_{i}\right) \right) \left( y_{i}-\eta _{it} \right) \right\} }{\left[ \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2} \\ \frac{\partial ^2}{\partial \gamma _{0,t}^2}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{k_{1}\left( y_{i}\right) \left( y_{i}-\eta _{it}\right) ^2 - \left( y_{i}-\eta _{it}\right) \left( \delta _t + 1 - k_{1}\left( y_{i}\right) \right) \tau _{it}}{\left[ \tau _{it} +\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2} \\ \frac{\partial ^2}{\partial \gamma _{0,t}\partial \delta _{t}}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \frac{\left( y_{i}-\eta _{it}\right) \left( \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right) \left( 1-k_1'\right) -\left( y_{i}-\eta _{it}\right) ^2\left( \delta _t + 1 - k_{1}\left( y_{i}\right) \right) }{\left[ \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2} \\ \frac{\partial ^2}{\partial \delta _{t}^2}\log f\left( y_{i}|{\varvec{\Theta }}_{t}\right)= & {} \left[ \log k_{1}\left( y_{i}\right) + \frac{\left( y_{i}-\eta _{it}\right) }{\left( \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right) }\frac{\delta _t k_1' + 1 -k_{1}\left( y_{i}\right) }{\delta _t^2} \right] \\ {}+ & {} \frac{k_1'\left( 1-k_1\right) }{k_{1}}\left( 1 + \frac{k_1}{\delta _t} \right) +\frac{\delta _t + 1 - k_{1}\left( y_{i}\right) }{\delta _{t}} \frac{\left( y_{i}-\eta _{it}\right) ^2}{\left[ \tau _{it}+\delta _{t}\left( y_{i}-\eta _{it}\right) \right] ^2}, \\ \end{aligned}$$

where

$$\begin{aligned} k_1'=\frac{\partial }{\partial \delta _{t}}k_{1}\left( y_{i}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grego, J.M., Yates, P.A. Robust Local Likelihood Estimation for Non-stationary Flood Frequency Analysis. JABES (2024). https://doi.org/10.1007/s13253-024-00614-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13253-024-00614-0

Keywords

Navigation