Skip to main content
Log in

Abstract

We present a novel method for estimating species abundance using presence–absence maps. Our approach takes the spatial context into consideration, distinguishing it from conventional methods. The proposed method is built upon a well-known kernel estimation for point pattern intensity, with the addition of a new parameter representing the mean abundance in each occupied cell. The parameter estimate is obtained through maximum likelihood estimation. The expected abundance corresponds to the integral of the intensity over the study area, which can be estimated by taking the Riemann sum of the intensity. The implementation of our method is straightforward, using existing packages in the R software. We compared various bandwidth selection methods within our approach and assessed the estimation performance against some approaches based on the random placement model or negative binomial model through the simulation study and an empirical forestry data in Barro Colorado Island (BCI), Panama. The results of the simulation and the application demonstrate that our method, with a carefully chosen bandwidth, outperforms the alternatives for highly aggregated data and improves the issue of underestimation. Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arrhenius O (1921) Species and area. J Ecol 9(1):95–99

    Article  Google Scholar 

  • Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Baddeley A, Turner R (2005) Spatstat: an r package for analyzing spatial point patterns. J Stat Softw 12(6):1–42

    Article  Google Scholar 

  • Baddeley AJ, Møller J, Waagepetersen R (2000) Non-and semi-parametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54(3):329–350

    Article  MathSciNet  MATH  Google Scholar 

  • Chang Y-M, Hsu N-J, Huang H-C (2010) Semiparametric estimation and selection for nonstationary spatial covariance functions. J Comput Graph Stat 19:117–139

    Article  MathSciNet  Google Scholar 

  • Coleman BD (1981) On random placement and species-area relations. Math Biosci 54(3–4):191–215

    Article  MathSciNet  MATH  Google Scholar 

  • Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Condit R, Perez R, Aguilar S, Lao S, Foster R, Hubbell S (2019a) BCI 50-ha Plot Taxonomy. Dryad, https://doi.org/10.15146/R3FH61

  • Condit R, Perez R, Aguilar S, Lao S, Foster R, Hubbell S (2019b) Complete data from the Barro Colorado 50-ha plot: 423617 trees, 35 years, v3, DataONE Dash, Dataset. Dryad https://doi.org/10.15146/5xcp-0d46

  • Conlisk E, Conlisk J, Enquist B, Thompson J, Harte J (2009) Improved abundance prediction from presence-absence data. Glob Ecol Biogeogr 18(1):1–10

    Article  Google Scholar 

  • Conlisk E, Conlisk J, Harte J (2007) The impossibility of estimating a negative binomial clustering parameter from presence-absence data: a comment on he and gaston. Am Nat 170(4):651–654

    Article  Google Scholar 

  • Cressie N, Pavlicová M (2002) Calibrated spatial moving average simulations. Stat Model 2(4):267–279

    Article  MathSciNet  MATH  Google Scholar 

  • Cronie O, Van Lieshout MNM (2018) A non-model-based approach to bandwidth selection for kernel estimators of spatial intensity functions. Biometrika 105(2):455–462

    Article  MathSciNet  MATH  Google Scholar 

  • Daley DJ, Vere-Jones D et al (2003) An introduction to the theory of point processes: volume I: elementary theory and methods. Springer, Berlin

    MATH  Google Scholar 

  • Diggle P (1985) A kernel method for smoothing point process data. J R Stat Soc Ser C (Appl Stat) 34(2):138–147

    MATH  Google Scholar 

  • Diggle P (2003) Statistical analysis of spatial point patterns. Mathematics in biology. Arnold, https://books.google.com.tw/books?id=fnFhQgAACAAJ

  • Gaston KJ, Rodrigues AS (2003) Reserve selection in regions with poor biological data. Conserv Biol 17(1):188–195

    Article  Google Scholar 

  • He F, Gaston KJ (2000) Estimating species abundance from occurrence. Am Nat 156(5):553–559

    Article  Google Scholar 

  • He F, Gaston KJ (2007) Estimating abundance from occurrence: an underdetermined problem. Am Nat 170(4):655–659

    Article  Google Scholar 

  • He F, Hubbell SP (2003) Percolation theory for the distribution and abundance of species. Phys Rev Lett 91(19):198103

    Article  Google Scholar 

  • He F, Reed W (2006) Downscaling abundance from the distribution of species: occupancy theory and applications. Scaling and uncertainty analysis in ecology. Springer, Berlin, pp 89–108

    Chapter  Google Scholar 

  • Higdon D (1998) A process-convolution approach to modelling temperatures in the north atlantic ocean. Environ Ecol Stat 5(2):173–190

    Article  Google Scholar 

  • Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, De Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283(5401):554–557

    Article  Google Scholar 

  • Huggins R, Hwang W-H, Stoklosa J (2018) Estimation of abundance from presence-absence maps using cluster models. Environ Ecol Stat 25(4):495–522

    Article  MathSciNet  Google Scholar 

  • Hui C, McGeoch MA, Reyers B, Roux PC, Greve M, Chown SL (2009) Extrapolating population size from the occupancy-abundance relationship and the scaling pattern of occupancy. Ecol Appl 19(8):2038–2048

    Article  Google Scholar 

  • Hwang W-H, Blakey RV, Stoklosa J (2020) Right-censored mixed poisson count models with detection times. J Agric Biol Environ Stat 25(1):112–132

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang W-H, He F (2011) Estimating abundance from presence/absence maps. Methods Ecol Evol 2(5):550–559

    Article  Google Scholar 

  • Hwang W-H, Huggins R, Stoklosa J (2016) Estimating negative binomial parameters from occurrence data with detection times. Biom J 58(6):1409–1427

    Article  MathSciNet  MATH  Google Scholar 

  • Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns, vol 70. John Wiley & Sons, New Jersey

    MATH  Google Scholar 

  • Kunin WE (1998) Extrapolating species abundance across spatial scales. Science 281(5382):1513–1515

    Article  Google Scholar 

  • Kunin WE, Hartley S, Lennon JJ (2000) Scaling down: on the challenge of estimating abundance from occurrence patterns. Am Nat 156(5):560–566

    Article  Google Scholar 

  • Loader C (1999) Local regression and likelihood. Springer, New York

    Book  MATH  Google Scholar 

  • McSwiggan G, Baddeley A, Nair G (2017) Kernel density estimation on a linear network. Scand J Stat 44(2):324–345

    Article  MathSciNet  MATH  Google Scholar 

  • Pielou EC (1977) Mathematical ecology. (No Title)

  • Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132(5):652–661

    Article  Google Scholar 

  • Rakshit S, Davies T, Moradi MM, McSwiggan G, Nair G, Mateu J, Baddeley A (2019) Fast kernel smoothing of point patterns on a large network using two-dimensional convolution. Int Stat Rev 87(3):531–556

    Article  MathSciNet  MATH  Google Scholar 

  • Scott D (1992) Multivariate density estimation: theory, practice and visualization. John Wiley & Sons, NY

    Book  MATH  Google Scholar 

  • Silverman BW (1986) Monographs on statistics and applied probability. Density estimation for statistics and data analysis, 26

  • Solow AR, Smith WK (2010) On predicting abundance from occupancy. Am Nat 176(1):96–98

    Article  Google Scholar 

  • Vilela B, Villalobos F (2015) letsR: a new r package for data handling and analysis in macroecology. Methods Ecol Evol 6(10):1229–1234

    Article  Google Scholar 

  • Warren M, McGeoch M, Chown S (2003) Predicting abundance from occupancy: a test for an aggregated insect assemblage. J Anim Ecol 72(3):468–477

    Article  Google Scholar 

  • Wright DH (1991) Correlations between incidence and abundance are expected by chance. J Biogeogr 463–466

  • Yin D, He F (2014) A simple method for estimating species abundance from occurrence maps. Methods Ecol Evol 5(4):336–343

    Article  Google Scholar 

  • Yoccoz NG, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16(8):446–453

    Article  Google Scholar 

Download references

Funding

National Science and Technology Council (101-2118-M-032-008, 105-2118-M-032-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Mei Chang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 56 KB)

Appendix

Appendix

Throughout the paper, we assume the points \(\{\textbf{z}_k\}\) fall in cell \(E_i\) are close to \(\textbf{u}_i\) (the centroid of cell \(E_i\)) and \(\rho \) represents the average abundance in each occupied cell. Then, we can show that

$$\begin{aligned} E(\hat{N}_{3})= & {} E\left( \sum _{i=1}^M \frac{\tilde{\rho }a \sum _{j=1,j\not =i}^{M}K_h(\textbf{u}_i-\textbf{u}_j)Y_j}{C_h(\textbf{u}_i)} \right) \\\approx & {} a \sum _{i=1}^M E \left( \frac{\sum \limits _{k} K_h(\textbf{u}_i-\textbf{z}_k) }{ C_h(\textbf{u}_i) } \right) \\= & {} a\sum _{i=1}^M\ \frac{\int \limits _{W} K_h(\textbf{u}_i-\textbf{u}) \delta (\textbf{u})d\textbf{u}}{C_h(\textbf{u}_i)} \end{aligned}$$

by using Campbell’s formula.

The expected abundance of the interested species in cell \(E_i\) is \(\lambda _i\) and \(\tilde{\lambda }_{i,h}^*\) is the proposed estimator for it. The covariance of \(\tilde{\lambda }_{i,h}^*\) and \(\tilde{\lambda }_{j,h}^*\) is approximated by

$$\begin{aligned}{} & {} Cov \left( \widetilde{\lambda }_{i,h}^* \widetilde{\lambda }_{j,h}^* \right) \approx \frac{a^2}{C_h (\textbf{u}_i) C_h (\textbf{u}_j)} \times Cov \left( \sum \limits _{l} K_h (\textbf{u}_i -\textbf{z}_l), \sum \limits _k K_h (\textbf{u}_i -\textbf{z}_k) \right) \\= & {} \frac{a^2}{C_h (\textbf{u}_i) C_h (\textbf{u}_j)} \times \left\{ E \left[ \sum \limits _l K_h (\textbf{u}_i -\textbf{z}_l) \sum \limits _{k} K_h (\textbf{u}_j -\textbf{z}_k) \right] \right. \\{} & {} \left. - E \left[ \sum \limits _l K_h \left( \textbf{u}_i -\textbf{z}_l \right) \right] E \left[ \sum \limits _{k} K_h \left( \textbf{u}_j -\textbf{z}_k \right) \right] \right\} \\= & {} \frac{a^2}{C_h (\textbf{u}_i) C_h (\textbf{u}_j)} \Biggl \{ E \left[ \sum \limits _{l} K_h (\textbf{u}_i - \textbf{z}_l) K_h (\textbf{u}_j - \textbf{z}_l) \right] + E \left[ \sum \sum \limits _{l \ne k} K_h (\textbf{u}_i - \textbf{z}_l) K_h (\textbf{u}_j - \textbf{z}_k) \right] \\- & {} \int K_h (\textbf{u}_i - \textbf{u}) \delta (\textbf{u}) d\textbf{u} \times \int K_h (\textbf{u}_j - \textbf{v}) \delta (\textbf{v}) d \textbf{v} \Biggr \} \\= & {} \frac{a^2}{C_h (\textbf{u}_i) C_h (\textbf{u}_j)} \Biggl \{ \int \limits _{W} K_h(\textbf{u}_i-\textbf{u}) K_h(\textbf{u}_j-\textbf{u}) \delta (\textbf{u})d\textbf{u}\\{} & {} + \int \limits _{W} K_h(\textbf{u}_i-\textbf{u}) \delta (\textbf{u})d\textbf{u} \times \int \limits _{W} K_h(\textbf{u}_j-\textbf{v}) \delta (\textbf{v})d\textbf{v}\\- & {} \int K_h (\textbf{u}_i - \textbf{u}) \delta (\textbf{u}) d\textbf{u} \times \int K_h (\textbf{u}_j - \textbf{v}) \delta (\textbf{v}) d \textbf{v} \Biggr \} \\= & {} a^2\frac{\int \limits _{W} K_h(\textbf{u}_i-\textbf{u}) K_h(\textbf{u}_j-\textbf{u}) \delta (\textbf{u})d\textbf{u} }{C_h (\textbf{u}_i) C_h (\textbf{u}_j)}. \\ \end{aligned}$$

We use the above approximation to obtain

$$\begin{aligned} Var \left( \hat{N}_3 \right) = \sum \limits _i \sum \limits _j Cov \left( \widetilde{\lambda }_{i,h}^* \widetilde{\lambda }_{j,h}^* \right) \approx a^2 \sum _{i=1}^M\sum _{j=1}^M \frac{\int \limits _{W} K_h(\textbf{u}_i-\textbf{u}) K_h(\textbf{u}_j-\textbf{u}) \delta (\textbf{u})d\textbf{u} }{C_h (\textbf{u}_i) C_h (\textbf{u}_j)}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YM., Huang, YC. Estimating Species Abundance from Presence–Absence Maps by Kernel Estimation. JABES (2023). https://doi.org/10.1007/s13253-023-00589-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13253-023-00589-4

Keywords

Navigation