Skip to main content

Advertisement

Log in

Novel Peripheral Perfusion Dynamics Indices for Detecting and Grading Arterial Stenosis

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Peripheral artery disease causes severe morbidity, especially in diabetics and the elderly. There is a need for accurate noninvasive detection of peripheral arterial stenosis. The study has tested the hypothesis that arterial stenosis and the associated adaptation of the downstream circulation yield characteristic changes in the leg perfusion dynamics that enable early diagnosis, utilizing impedance plethysmography.

Methods

The arterial perfusion dynamic was derived from impedance plethysmography (IPG). Two degrees of arterial stenosis were emulated by inflating a blood-pressure cuff around the thigh to 45 and 90 mmHg, in healthy volunteers (n = 30). IPG signals were acquired continuously throughout the experiment. Ankle and brachial blood pressures were measured at the beginning of each experiment and at the end of each emulated stenosis phase.

Results

Thigh compressions did not affect the pulse-transit time, but prolonged the time to the peak perfusion wave. Segmentation of the perfusion upstroke into two phases, at the time point of maximum acceleration (MAT), revealed that arterial compression prolonged only the initial slow phase duration (SPd). The MAT and SPd were proportional to the emulated stenosis severity and detected the arterial stenosis with high sensitivity (> 93%) and specificity (100%). The SPd increased from 46.4 ± 21.2 ms at baseline to 75.4 ± 38.5 ms and 145 ± 39 ms under 45 mmHg and 90 mmHg compressions (p < 0.001), without affecting the pulse-transit time.

Conclusions

The novel method and indices can identify and grade the emulated arterial stenosis with high accuracy and may assist in differentiating between focal arterial stenosis and widespread arterial hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fowkes, F. G. R., et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. The Lancet. 382(9901):1329–1340, 2013. https://doi.org/10.1016/S0140-6736(13)61249-0.

    Article  Google Scholar 

  2. Shah, A. D., et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 3(2):105–113, 2015. https://doi.org/10.1016/S2213-8587(14)70219-0.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hirsch, A. T., et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 286(11):1317–1324, 2001. https://doi.org/10.1001/jama.286.11.1317.

    Article  CAS  PubMed  Google Scholar 

  4. Olin, J. W., and B. A. Sealove. Peripheral artery disease: current insight into the disease and its diagnosis and management. Mayo Clin. Proc. 85(7):678–692, 2010. https://doi.org/10.4065/mcp.2010.0133.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Beckman, J. A., C. O. Higgins, and M. Gerhard-Herman. Automated oscillometric determination of the ankle-brachial index provides accuracy necessary for office practice. Hypertension. 47(1):35–38, 2006. https://doi.org/10.1161/01.HYP.0000196686.85286.9c.

    Article  CAS  PubMed  Google Scholar 

  6. Lee, J.-Y., et al. Prevalence and clinical implications of newly revealed, asymptomatic abnormal ankle-brachial index in patients with significant coronary artery disease. Cardiovasc. Interv. 6(12):1303–1313, 2013. https://doi.org/10.1016/j.jcin.2013.08.008.

    Article  Google Scholar 

  7. Fowker, F. G. R., et al. Ankle brachial index combined with framingham risk score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 300(2):197–208, 2008. https://doi.org/10.1001/jama.300.2.197.

    Article  Google Scholar 

  8. Gerhard-Herman, M. D., et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary. JACC. 69(11):1465–1508, 2017. https://doi.org/10.1016/j.jacc.2016.11.008.

    Article  PubMed  Google Scholar 

  9. Halliday, A., and J. J. Bax. The 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 55(3):301–302, 2018. https://doi.org/10.1016/j.ejvs.2018.03.004.

    Article  PubMed  Google Scholar 

  10. Takahashi, I., K. Furukawa, W. Ohishi, T. Takahashi, M. Matsumoto, and S. Fujiwara. Comparison between oscillometric- and Doppler-ABI in elderly individuals. VHRM. 9:89–94, 2013. https://doi.org/10.2147/VHRM.S39785.

    Article  Google Scholar 

  11. AbuRahma, A. F., et al. Critical analysis and limitations of resting ankle-brachial index in the diagnosis of symptomatic peripheral arterial disease patients and the role of diabetes mellitus and chronic kidney disease. J. Vasc. Surg. 71(3):937–945, 2020. https://doi.org/10.1016/j.jvs.2019.05.050.

    Article  PubMed  Google Scholar 

  12. Herraiz-Adillo, A., I. Cavero-Redondo, C. Álvarez-Bueno, D. P. Pozuelo-Carrascosa, and M. Solera-Martínez. The accuracy of toe brachial index and ankle brachial index in the diagnosis of lower limb peripheral arterial disease: A systematic review and meta-analysis. Atherosclerosis. 315:81–92, 2020. https://doi.org/10.1016/j.atherosclerosis.2020.09.026.

    Article  CAS  PubMed  Google Scholar 

  13. Tehan, P. E., A. Bray, and V. H. Chuter. Non-invasive vascular assessment in the foot with diabetes: sensitivity and specificity of the ankle brachial index, toe brachial index and continuous wave Doppler for detecting peripheral arterial disease. J. Diabetes Complicat. 30(1):155–160, 2016. https://doi.org/10.1016/j.jdiacomp.2015.07.019.

    Article  Google Scholar 

  14. Wikström, J., T. Hansen, L. Johansson, L. Lind, and H. Ahlström. Ankle brachial index <0.9 underestimates the prevalence of peripheral artery occlusive disease assessed with whole-body magnetic resonance angiography in the elderly. Acta Radiol. 49(2):143–149, 2008. https://doi.org/10.1080/02841850701732957.

    Article  PubMed  Google Scholar 

  15. Aboyans, V., et al. Measurement and interpretation of the ankle-brachial index: a scientific statement from the American Heart Association. Circulation. 126(24):2890–2909, 2012. https://doi.org/10.1161/CIR.0b013e318276fbcb.

    Article  PubMed  Google Scholar 

  16. Tehan, P. E., D. Santos, and V. H. Chuter. A systematic review of the sensitivity and specificity of the toe–brachial index for detecting peripheral artery disease. Vasc Med. 21(4):382–389, 2016. https://doi.org/10.1177/1358863X16645854.

    Article  PubMed  Google Scholar 

  17. Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28(3):R1–R39, 2007. https://doi.org/10.1088/0967-3334/28/3/R01.

    Article  PubMed  Google Scholar 

  18. Ro, D. H., H. J. Moon, J. H. Kim, K. M. Lee, S. J. Kim, and D. Y. Lee. Photoplethysmography and continuous-wave Doppler ultrasound as a complementary test to ankle-brachial index in detection of stenotic peripheral arterial disease. Angiology. 64(4):314–320, 2013. https://doi.org/10.1177/0003319712464814.

    Article  PubMed  Google Scholar 

  19. Anderson, F. A. Impedance plethysmography in the diagnosis of arterial and venous disease. Ann. Biomed. Eng. 12(1):79–102, 1984. https://doi.org/10.1007/BF02410293.

    Article  PubMed  Google Scholar 

  20. Davies, J. E., et al. The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index. AJP-Heart Circ. Physiol. 298(2):580–586, 2010. https://doi.org/10.1152/ajpheart.00875.2009.

    Article  CAS  Google Scholar 

  21. Wang, J.-J., A. B. O’Brien, N. G. Shrive, K. H. Parker, and J. V. Tyberg. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. AJP-Heart Circ. Physiol. 284(4):H1358–H1368, 2003. https://doi.org/10.1152/ajpheart.00175.2002.

    Article  CAS  Google Scholar 

  22. Tankanag, A. V., A. A. Grinevich, T. V. Kirilina, G. V. Krasnikov, G. M. Piskunova, and N. K. Chemeris. Wavelet phase coherence analysis of the skin blood flow oscillations in human. Microvasc. Res. 95:53–59, 2014. https://doi.org/10.1016/j.mvr.2014.07.003.

    Article  PubMed  Google Scholar 

  23. Mašanauskienė, E., S. Sadauskas, A. Naudžiūnas, A. Unikauskas, and E. Stankevičius. Impedance plethysmography as an alternative method for the diagnosis of peripheral arterial disease. Medicina. 50(6):334–339, 2014. https://doi.org/10.1016/j.medici.2014.11.007.

    Article  PubMed  Google Scholar 

  24. Sheng, C.-S., Y. Li, Q.-F. Huang, Y.-Y. Kang, F.-K. Li, and J.-G. Wang. Pulse waves in the lower extremities as a diagnostic tool of peripheral arterial disease and predictor of mortality in elderly Chinese. Hypertension. 67(3):527–534, 2016. https://doi.org/10.1161/HYPERTENSIONAHA.115.06666.

    Article  CAS  PubMed  Google Scholar 

  25. Wu, H.-T., et al. Novel application of parameters in waveform contour analysis for assessing arterial stiffness in aged and atherosclerotic subjects. Atherosclerosis. 213(1):173–177, 2010. https://doi.org/10.1016/j.atherosclerosis.2010.08.075.

    Article  CAS  PubMed  Google Scholar 

  26. Hosmer, D. W., and S. Lemwshow. Applied Logistic Regression. Chapter 5, 2nd ed. New York: Wiley, pp. 160–154, 2000.

    Book  Google Scholar 

  27. The Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values. Eur. Heart J. 31(19):2338–2350, 2010. https://doi.org/10.1093/eurheartj/ehq165.

    Article  PubMed Central  Google Scholar 

  28. Payne, R. A., C. N. Symeonides, D. J. Webb, and S. R. J. Maxwell. Pulse transit time measured from the ECG: an unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100(1):136–141, 2006. https://doi.org/10.1152/japplphysiol.00657.2005.

    Article  CAS  PubMed  Google Scholar 

  29. Philip, J., and J. W. Mitchell. Fox and McDonald’s Introduction to Fluid Mechanics, 9th ed. New York: Wiley, 2015.

    Google Scholar 

  30. Brescia, A., A. B. M. Wickers, J. C. Correa, M. R. Smeds, and D. L. Jacobs. Stenting of femoropopliteal lesions using interwoven nitinol stents. J. Vasc. Surg. 61(6):1472–1478, 2015. https://doi.org/10.1016/j.jvs.2015.01.030.

    Article  PubMed  Google Scholar 

  31. Amendt, K., et al. Provisional focal stenting of complex femoropopliteal lesions using the Multi-LOC multiple stent delivery system—12-month results from the LOCOMOTIVE EXTENDED study. Vasa. 50(3):209–216, 2021. https://doi.org/10.1024/0301-1526/a000927.

    Article  PubMed  Google Scholar 

  32. Hageman, D., M. M. L. van den Houten, N. Pesser, L. N. M. Gommans, M. R. M. Scheltinga, and J. A. W. Teijink. Diagnostic accuracy of automated oscillometric determination of the ankle-brachial index in peripheral artery disease. J. Vasc. Surg. 73(2):652–660, 2021. https://doi.org/10.1016/j.jvs.2020.05.077.

    Article  PubMed  Google Scholar 

  33. Shabani Varaki, E., G. D. Gargiulo, S. Penkala, and P. P. Breen. Peripheral vascular disease assessment in the lower limb: a review of current and emerging non-invasive diagnostic methods. Biomed. Eng. Online. 17(1):61, 2018. https://doi.org/10.1186/s12938-018-0494-4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the participation of all study volunteers and the technical assistance of Dr. Oscar Lichtenstein and Mrs. Alexandra Alexandrovich (MSc.) from the Faculty of Biomedical Engineering at the Technion. This work was supported by the Fund for the Promotion of Research at the Technion and by grants from the United States–Israel Binational Science Foundation (No. 2013040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Landesberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Associate Editor Sarah Vigmostad oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 401 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heitner, T.J., Livneh, A. & Landesberg, A. Novel Peripheral Perfusion Dynamics Indices for Detecting and Grading Arterial Stenosis. Cardiovasc Eng Tech 14, 774–785 (2023). https://doi.org/10.1007/s13239-023-00686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-023-00686-y

Keywords

Navigation