Skip to main content
Log in

A Mechanistic Lumped Parameter Model of the Berlin Heart EXCOR to Analyze Device Performance and Physiologic Interactions

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

The Berlin Heart EXCOR (BH) is the only FDA-approved, extracorporeal pulsatile ventricular assist device (VAD) for infants and children with heart failure. Clinicians control four settings on the device—systolic and diastolic drive pressures, device pump rate, and systolic time as a percentage of the pump cycle. However, interactions between BH pneumatics and the native circulation remain poorly understood. Thus, establishing appropriate device size and settings can be challenging on a patient-to-patient basis.

Methods

In this study we develop a novel lumped parameter network based on simplified device mechanics. We perform parametric studies to characterize device behavior, study interactions between the left ventricle (LV) and BH across different device settings, and develop patient-specific simulations. We then simulate the impact of changing device parameters for each of three patients.

Results

Increasing systolic pressure and systolic time increased device output. We identified previously unobserved cycle-to-cycle variations in LV–BH interactions that may impact patient health. Patient-specific simulations demonstrated the model’s ability to replicate BH performance, captured trends in LV behavior after device implantation, and emphasized the importance of device rate and volume in optimizing BH efficiency.

Conclusion

We present a novel, mechanistic model that can be readily adjusted to study a wide range of device settings and clinical scenarios. Physiologic interactions between the BH and the native LV produced large variability in cardiac loading. Our findings showed that operating the BH at a device rate greater than the patient’s native heart decreases variability in physiological interactions between the BH and LV, increasing cardiac offloading while maintaining cardiac output. Device rates that are close to the resting heart rate may result in unfavorable cardiac loading conditions. Our work demonstrates the utility of our model to investigate BH performance for patient-specific physiologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Adachi, I., and R. D. Jaquiss. Mechanical circulatory support in children. Current Cardiol. Rev. 12:132–140, 2016.

    Article  Google Scholar 

  2. Almond, C., D. Morales, E. Blackstone, M. Turrentine, M. Imamura, M. Massioctte, L. Jordan, E. Devaney, C. Ravishankar, K. Kanter, W. Holman, R. Kroslowitz, C. Tjossem, L. Thuita, G. Cohen, H. Buchholz, J. St Louis, K. Nguyen, R. Niebler, B. Reemtsen, P. den Wear-, O. Reinhartz, K. Guleserian, M. Mitchell, M. Bleiweis, C. Canter, and T. Humpl. Berlin Heart EXCOR pediatric ventricular assist device for bridge to heart transplantation in US children. Circulation. 127:1702–1711, 2013.

    Article  CAS  PubMed  Google Scholar 

  3. Ascher, U. M., and L. R. Petzold. Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, 1998.

  4. Avrahami, I., M. Rosenfeld, S. Raz, and S. Einav. Numerical model of flow in a sac-type ventricular assist device. Artif. Organs. 30:529–538, 2006.

    Article  PubMed  Google Scholar 

  5. BH GmbH. EXCOR Pediatric VAD: Ventricular Assist Device with Stationary Driving Unit Ikus Rev 21, Instructions for Use 1000721x09 Revision 8. GmbH BH, 2015.

  6. Blume, E. D., D. C. Naftel, H. J. Bastardi, B. W. Duncan, J. K. Kirklin, and S. A. Webber. Outcomes of children bridged to heart ttransplantation with ventricular assist devices. Circulation. 113:2313–2319, 2006.

    Article  PubMed  Google Scholar 

  7. Caimi, A., F. Sturla, B. Good, M. Vidotto, R. DePonti, F. Piatti, K. B. Manning, and A. Redaelli. Toward the virtual benchmarking of pneumatic ventricular assist devices: application of a novel fluid-structure interaction-based strategy to the Penn state 12 cc device. J. Biomech. Eng. 139:081008, 2017.

    Article  Google Scholar 

  8. Center BCH Hospital BC. Z-Score Calculator. Center BCH Hospital BC, 2020.

  9. Chan, C. H. H., S. Diab, K. Moody, O. H. Frazier, L. C. Sampaio, C. D. J. Fraser, and J. Teruya. Adachi in vitro hemocompatibility evaluation of ventricular assist devices in pediatric flow conditions: a benchmark study. Artif. Organs. 42:1028–1034, 2018.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, W., B. Li, J. Kajstura, P. Li, M. Wolin, E. Sonnenblick, T. Hintze, G. Olivetti, and P. Anversa. Stretch-induced programmed myocyte cell death. J. Clin. Investig. 96:2247–2259, 1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Committee AHAS Subcommittee SS. Heart disease and stroke statistics–2006 update. Circulation. 113:85–151, 2006.

    Google Scholar 

  12. Dandel, M., and R. Hetzer. Recovery of failing hearts by mechanical unloading: pathophysiologic insights and clinical relevance. Am. Heart J. 206:30–50, 2018.

    Article  PubMed  Google Scholar 

  13. Fleeter, C. M., G. Geraci, D. E. Schiavazzi, A. M. Kahn, and A. L. Marsden. Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics. Comput. Methods Appl. Mech. Eng. 365:113030, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hetzer, R., F. Kaufmann, and E. M. D. Walter. Paediatric mechanical circulatory support with Berlin Heart EXCOR: development and outcome of a 23-year experience. Eur. J. Cardio-Thorac. Surg. 50:203–210, 2016.

    Article  Google Scholar 

  15. Irving, C. A., D. S. Crossland, S. Haynes, M. Griselli, A. Hasan, and R. Kirk. Evolving experience with explantation from the Berlin Heart EXCOR ventricular assist device support in children. J. Heart Lung Transpl. 33:211–213, 2013.

    Article  Google Scholar 

  16. Konig, C., and M. Mokhtarzadeh-Dehghan. Investigation of unsteady flow in a model of a ventricular assist device by numerical modelling and comparison with experiment. Med. Eng. Phys. 21:53–64, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Kung, E., G. Pennati, F. Migliavacca, T. Y. Hsia, R. Figliola, A. Marsden, A. Giardini, and M. Investigators. A simulation protocol for exercise physiology in Fontan patients using a closed loop lumped-parameter model. J. Biomech. Eng. 136:8, 2014.

    Article  Google Scholar 

  18. Long, C., A. Marsden, and Y. Bazilevs. Fluid–structure interaction simulation of pulsatile ven tricular assist devices. Comput. Mech. J. 52:971–981, 2013.

    Article  Google Scholar 

  19. Mackling, T., T. Shah, V. Dimas, K. Guleserian, M. Sharma, J. Forbess, M. Ardura, J. Gross-Toalson, Y. Lee, J. Journeycake, and B. Aliessa. Management of single-ventricle patients with berlin heart EXCOR ventricular assist devices: single-center experience. Aritif. Organs. 36:555–559, 2012.

    Article  CAS  Google Scholar 

  20. Mancini, D. M., A. Beniaminovitz, H. Levin, K. Catanesse, M. Flannery, M. DiTullio, S. Savin, M. E. Cardisco, E. Rose, and M. Oz. Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation. 98:2383–2389, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Marsden, A. L. Simulation based planning of surgical interventions in pediatric cardiology. Phys. Fluids. 25:101303, 2013.

    Article  Google Scholar 

  22. Marsden, A. L., Y. Bazilevs, C. C. Long, and M. Behr. Recent advances in computational method- ology for simulation of mechanical circulatory assist devices. Wiley Interdiscip. Rev. 6:169–188, 2014.

    Google Scholar 

  23. Miera, O., K. R. Schmitt, E. Delmo-Walter, S. Ovroutski, R. Hetzer, and F. Berger. Pump size of Berlin Heart EXCOR pediatric device influences clinical outcome in children. J. Heart Lung Transpl. 33:816–821, 2014.

    Article  Google Scholar 

  24. Migliavacca, F., G. Pennati, G. Dubini, R. Fumero, R. Pietrabissa, G. Urcelay, E. Bove, T. Hsia, and M. de Leval. Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am. J. Physiol. Heart Circ. Physiol. 280:H2076–H2086, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Minnath, M. A., G. Unnikrishnan, and E. Purushothaman. Transport studies of thermoplastic polyurethane/natural rubber (TPU/NR) blends. J. Membr. Sci. 379:361–369, 2011.

    Article  Google Scholar 

  26. Morena, G. E., A. Charroqui, M. L. Pilan, R. H. Magliola, M. P. Krynski, M. Althabe, L. M. Landry, G. Sciuccati, A. Villa, and H. Vogelfang. Clinical experience with Berlin Heart Excor in pediatric patients in Argentina: 1373 days of cardiac support. Pediatr. Cardiol. 32:652–658, 2011.

    Article  Google Scholar 

  27. Mynard, J., M. Davidson, D. Penny, and J. Smolich. A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int. J. Numer. Methods Biomed. Eng. 28:626–641, 2012.

    Article  CAS  Google Scholar 

  28. Nandi, D., and J. W. Rossano. Epidemiology and cost of heart failure in children. Cardiol. Young. 25:1460–1468, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Obidowski, D., P. Reorowicz, D. Witkowski, K. Sobczak, and K. Jozwik. Methods for determination of stagnation in pneumatic ventricular assist devices. Int. J. Artif. Organs. 41:653–663, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Odell, W. G. Accuracy of the left ventricular cavity volume and ejection fraction for conventional estimation methods and 3D surface fitting. J. Am. Heart Assoc. 8:e009124, 2010.

    Article  Google Scholar 

  31. Orr, Y., A. Jeewa, M. C. McGarry, and I. Adachi. Upsizing of a Berlin Heart EXCOR pediatric left ventricular assist device to achieve adequate flow requirement. J. Heart Lung Transpl. 32:845–846, 2013.

    Article  Google Scholar 

  32. Pekkan, K., D. Frakes, D. De Zelicourt, C. W. Lucas, W. J. Parks, and A. P. Yoganathan. Coupling pediatric ventricle assist devices to the fontan circulation: simulations with a lumped-parameter model. Am. Soc. Artif. Internal Organs. 51:618–628, 2005.

    Article  Google Scholar 

  33. Pratap, J. N., and S. Wilmshurst. Anesthetic management of children with in situ Berlin Heart EXCOR. Pediatr. Anesth. 20:812–820, 2010.

    Article  Google Scholar 

  34. Roszelle, B. N., B. T. Cooper, T. C. Long, S. Deutsch, and K. B. Manning. The 12 cc penn state pulsatile pediatric assist device: flow field observations at a reducated beat rate with application to weaning. Am. Soc. Artif. Organs. 54:325–331, 2008.

    Article  Google Scholar 

  35. Roudaut, R., K. Serri, and S. Lafitte. Thrombosis of prosthetic heart valves: diagnosis and therapeutic considerations. Heart. 93:137–142, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schiavazzi, D. E., A. Baretta, G. Pennati, T. Y. Hsia, and A. L. Marsden. Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. Int. J. Numer. Methods Biomed. Eng. 33:e02799, 2016.

    Google Scholar 

  37. Schmidt, T. M. Computational Evaluation of Ventricular Assist Device Implementation in the Single Ventricle Circulation. All Theses, 2016.

  38. Schubert, K., T. Schaller, E. Stojenthin, C. Stephan, H. H. Sievers, and M. Scharfschwerdt. A novel trileaflet mechanical heart valve: first in vitro results. Interactive Cardiovasc. Thorac. Surg. 28:689–694, 2019.

    Article  Google Scholar 

  39. Shi, Y., P. Lawford, and R. Hose. Review of zero-D and 1-D models of blood flow in the cardiovascular system. BioMed. Eng. OnLine. 10:1–38, 2011.

    Article  Google Scholar 

  40. Shimizue, S., T. Kawada, Y. Hayam, A. Kamiya, T. Shishido, and M. Sugimachi. Lumped parameter model for hemodynamic simulation of congenital heart diseases. J. Physiol. Sci. 68:103–111, 2018.

    Article  Google Scholar 

  41. Sievert, A., C. Wiesener, A. Arndt, W. Drewelow, and O. Simanski. Control of An Extracorporeal Heart Assist Device. IEEE International Conference on Control Applications. 15:63–68, 2012.

  42. Sousa, D., T. Cordeiro, T. Melo, N. J. da Rocha, I. Cestari, and A. Lima. Modeling, characterization and test of a pediatric ventricular assist device. J. Phys. 1044:e12047, 2018.

    Google Scholar 

  43. Timoshenko, S., and S. Woinowsky-Krieger. Theory of Plates and Shells. New York: McGraw-Hill Book Company, 1959.

    Google Scholar 

  44. Uriel, N., G. Sayer, S. Annamalai, N. K. Kapur, and D. Burkhoff. Mechanical unloading in heart failure. J. Am. Coll. Cardiol. 72:569–580, 2018.

    Article  PubMed  Google Scholar 

  45. Wermelt, J. Z., O. Honjo, A. Kilic, G. van Arsdell, C. Gruenwald, and T. Humpl. Use of a Pulsatile Ventricular Assist Device (Berlin Heart EXCOR) and an Interventional Lung Assist Device (Novalung) in an animal model. Am. Soc. Artif. Internal Organs. 54:498–503, 2008.

    Article  Google Scholar 

  46. Zimmerman, H., D. Covington, S. Richard, C. Inaht, B. Barber, and J. Copeland. Recovery of dilated cardiomyopathies in infants and children using left ventricular assist devices. Am. Soc. Artif. Internal Organs. 65:364–368, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the clinical expertise of Dr. Chris Almond, Dr. Katsuhide Maeda, Jenna Murray, NP, and Don Sheff, CCP and the assistance of our clinical research coordinator, Matthew Irvin. We also thank Stanford Undergraduate Advising and Research for their financial support.

Funding

This study was funded by Stanford Undergraduate Advising and Research Major Grant.

Data Availability

Not applicable.

Code Availability

Not applicable.

Conflict of interest

V. Yuan, A. Verma, N.K. Schiavone, and A.L. Marsden declare they have no conflicts of interest. D.N. Rosenthal is a co-leader at the Advanced Cardiac Therapies Improving Outcomes Network (ACTION Network), which receives funding from Berlin Heart EXCOR.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison L. Marsden.

Additional information

Associate Editor Igor Efimov oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, V., Verma, A., Schiavone, N.K. et al. A Mechanistic Lumped Parameter Model of the Berlin Heart EXCOR to Analyze Device Performance and Physiologic Interactions. Cardiovasc Eng Tech 13, 603–623 (2022). https://doi.org/10.1007/s13239-021-00603-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00603-1

Keywords

Navigation