Skip to main content
Log in

Numerical Analysis for Non-Uniformity of Balloon-Expandable Stent Deployment Driven by Dogboning and Foreshortening

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Stenting is the most common intervention for arteriosclerosis treatment; however, the success of the treatment depends on the incidence of in-stent restenosis (ISR). Stent deployment characteristics are major influencers of ISR and can be measured in terms of dogboning, asymmetry, and foreshortening. This study aimed to analyse the implications of balloon and stent-catheter assembly parameters on the stent deployment characteristics.

Methods

Experimental approach to analyse the impact of the balloon and stent-catheter assembly parameters on stent deployment characteristics is a time-consuming and complex task, whereas numerical methods prove to be quick, efficient, and reliable. In this study, eleven finite element models were employed to analyse non-uniform balloon stent expansion pattern, comprised of variation in, stent axial position on balloon, balloon length, balloon folding pattern, and balloon wall thickness.

Results

Obtained results suggest that the axially noncentral position of the stent on balloon and variable balloon thickness lead to non-uniform stent deployment pattern. Also, it was proved that variation in balloon length and balloon folding pattern influence deployment process.

Conclusion

Improved positional accuracies, uniform balloon wall thickness, and selection of the appropriate length of a balloon for selected stent configuration will help to minimize dogboning, asymmetry, and foreshortening during non-uniform stent expansion, thereby reducing the risk of restenosis. The stated numerical approach will be helpful to optimize stent catheter assembly parameters thus minimizing in-vitro tests and product development time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Azaouzi, M., A. Makradi, and S. Belouettar. Deployment of a self-expanding stent inside an artery: a finite element analysis. Mater. Des. 2012. https://doi.org/10.1016/j.matdes.2012.05.019.

    Article  Google Scholar 

  2. Berry, J. L., E. Manoach, C. Mekkaoui, P. H. Rolland, J. E. J. Moore, and A. Rachev. Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis. J. Vasc. Interv. Radiol. 2002. https://doi.org/10.1016/s1051-0443(07)60015-3.

    Article  PubMed  Google Scholar 

  3. Bukala, J., P. Kwiatkowski, and J. Malachowski. Numerical analysis of stent expansion process in coronary artery stenosis with the use of non-compliant balloon. Biocybern. Biomed. Eng. 2016. https://doi.org/10.1016/j.bbe.2015.10.009.

    Article  Google Scholar 

  4. Bukala, J., P. Kwiatkowski, and J. Malachowski. Numerical analysis of crimping and inflation process of balloon-expandable coronary stent using implicit solution. Int. J. Numer. Method. Biomed. Eng. 2017. https://doi.org/10.1002/cnm.2890.

    Article  PubMed  Google Scholar 

  5. De Beule, M., P. Mortier, S. G. Carlier, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 2008. https://doi.org/10.1016/j.jbiomech.2007.08.014.

    Article  PubMed  Google Scholar 

  6. Early, M., C. Lally, P. J. Prendergast, and D. J. Kelly. Stresses in peripheral arteries following stent placement: a finite element analysis. Comput. Methods Biomech. Biomed. Engin. 2009. https://doi.org/10.1080/10255840903065043.

    Article  PubMed  Google Scholar 

  7. Eshghi, N., M. H. Hojjati, M. Imani, and A. M. Goudarzi. Finite element analysis of mechanical behaviors of coronary stent. Procedia Eng. 2011. https://doi.org/10.1016/j.proeng.2011.04.506.

    Article  Google Scholar 

  8. Farb, A., G. Sangiorgi, A. J. Carter, V. M. Walley, W. D. Edwards, R. S. Schwartz, and R. Virmani. Pathology of acute and chronic coronary stenting in humans. Circulation. 1999. https://doi.org/10.1161/01.cir.99.1.44.

    Article  PubMed  Google Scholar 

  9. Farooq, V., B. D. Gogas, and P. W. Serruys. Restenosis: delineating the numerous causes of drug-eluting stent restenosis. Circ. Cardiovasc. Interv. 2011. https://doi.org/10.1161/circinterventions.110.959882.

    Article  PubMed  Google Scholar 

  10. Geith, M. A., K. Swidergal, B. Hochholdinger, T. G. Schratzenstaller, M. Wagner, and G. A. Holzapfel. On the importance of modeling balloon folding, pleating, and stent crimping: an FE study comparing experimental inflation tests. Int. J. Numer. Method. Biomed. Eng. 2019. https://doi.org/10.1002/cnm.3249.

    Article  PubMed  Google Scholar 

  11. Gervaso, F., C. Capelli, L. Petrini, S. Lattanzio, L. Di Virgilio, and F. Migliavacca. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 2008. https://doi.org/10.1016/j.jbiomech.2008.01.027.

    Article  PubMed  Google Scholar 

  12. Gomes, I. V., H. Puga, and J. L. Alves. Influence of the adopted balloon modeling strategies in the stent deployment procedure: an in-silico analysis. Cardiovasc. Eng. Technol. 2020. https://doi.org/10.1007/s13239-020-00470-2.

    Article  PubMed  Google Scholar 

  13. Gu, L., S. Zhao, and S. R. Froemming. Arterial wall mechanics and clinical implications after coronary stenting: comparison of three stent designs. Int. J. Appl. Mech. 2012. https://doi.org/10.1142/S1758825112500135.

    Article  Google Scholar 

  14. Harewood, F. J., and P. E. McHugh. Comparison of the implicit and explicit finite element methods using crystal plasticity. Comput. Mater. Sci. 2007. https://doi.org/10.1016/j.commatsci.2006.08.002.

    Article  Google Scholar 

  15. Hoffmann, R., G. S. Mintz, G. R. Dussaillant, J. J. Popma, A. D. Pichard, L. F. Satler, K. M. Kent, J. Griffin, and M. B. Leon. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation. 1996. https://doi.org/10.1161/01.cir.94.6.1247.

    Article  PubMed  Google Scholar 

  16. Jung, D. W., and D. Y. Yang. Step-wise combined implicit–explicit finite-element simulation of autobody stamping processes. J. Mater. Process. Technol. 1998. https://doi.org/10.1016/S0924-0136(98)00059-4.

    Article  Google Scholar 

  17. Kiousis, D. E., A. R. Wulff, and G. A. Holzapfel. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Ann. Biomed. Eng. 2009. https://doi.org/10.1007/s10439-008-9606-9.

    Article  PubMed  Google Scholar 

  18. Kumar, A., and N. Bhatnagar. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning. Comput. Methods Biomech. Biomed. Eng. 2020. https://doi.org/10.1080/10255842.2020.1822823.

    Article  Google Scholar 

  19. Lally, C., F. Dolan, and P. J. Prendergast. Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 2005. https://doi.org/10.1016/j.jbiomech.2004.07.022.

    Article  PubMed  Google Scholar 

  20. Liang, D. K., D. Z. Yang, M. Qi, and W. Q. Wang. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int. J. Cardiol. 2005. https://doi.org/10.1016/j.ijcard.2004.12.033.

    Article  PubMed  Google Scholar 

  21. Lim, D., S.-K. Cho, W.-P. Park, A. Kristensson, J.-Y. Ko, S. T. S. Al-Hassani, and H.-S. Kim. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 2008. https://doi.org/10.1007/s10439-008-9504-1.

    Article  PubMed  Google Scholar 

  22. Martin, D., and F. Boyle. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration. Int. J. Numer. Method. Biomed. Eng. 2013. https://doi.org/10.1002/cnm.2557.

    Article  PubMed  Google Scholar 

  23. Migliavacca, F., L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 2005. https://doi.org/10.1016/j.medengphy.2004.08.012.

    Article  PubMed  Google Scholar 

  24. Mortier, P., M. De Beule, S. G. Carlier, R. Van Impe, B. Verhegghe, and P. Verdonck. Numerical study of the uniformity of balloon-expandable stent deployment. J. Biomech. Eng. 2008. https://doi.org/10.1115/1.2904467.

    Article  PubMed  Google Scholar 

  25. Prendergast, P. J., C. Lally, S. Daly, A. J. Reid, T. C. Lee, D. Quinn, and F. Dolan. Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling. J. Biomech. Eng. 2003. https://doi.org/10.1115/1.1613674.

    Article  PubMed  Google Scholar 

  26. Rogers, C., D. Y. Tseng, J. C. Squire, and E. R. Edelman. Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury. Circ. Res. 1999. https://doi.org/10.1161/01.res.84.4.378.

    Article  PubMed  Google Scholar 

  27. Squire, J.C. Dynamics of endovascular stent expansion. PhD thesis, Massachusetts Institute of Technology, USA, 2000.

  28. Wang, W. Q., D. K. Liang, D. Z. Yang, and M. Qi. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 2006. https://doi.org/10.1016/j.jbiomech.2004.11.003.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wiesent, L., U. Schultheiß, C. Schmid, T. Schratzenstaller, and A. Nonn. Experimentally valida2ted simulation of coronary stents considering different dogboning ratios and asymmetric stent positioning. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0224026.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu, W., W. Q. Wang, D. Z. Yang, and M. Qi. Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 2007. https://doi.org/10.1016/j.jbiomech.2006.11.009.

    Article  PubMed  Google Scholar 

  31. Xu, J., J. Yang, N. Huang, C. Uhl, Y. Zhou, and Y. Liu. Mechanical response of cardiovascular stents under vascular dynamic bending. Biomed. Eng. Online. 2016. https://doi.org/10.1186/s12938-016-0135-8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zahedmanesh, H., D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy. J. Biomech. 2010. https://doi.org/10.1016/j.jbiomech.2010.03.050.

    Article  PubMed  Google Scholar 

  33. Zhao, S., L. Gu, and S. R. Froemming. On the importance of modeling stent procedure for predicting arterial mechanics. J. Biomech. Eng. 2012. https://doi.org/10.1115/1.4023094.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their sincere gratitude to the management of Sahajanand Medical Technologies Ltd. for providing motivation and support to carry out the research work.

Author Contribution

Study conception and design: Ganesh B. Rahinj, Menta V. Satyanarayana and Laxminarayanan Ramanan. Acquisition of data: Ganesh B. Rahinj, Menta V. Satyanarayana, Martin L. Sirivella and Harshit S. Chauhan. Analysis and interpretation of data: Ganesh B. Rahinj, Menta V. Satyanarayana, Martin L. Sirivella and Harshit S. Chauhan. Drafting of manuscript: Ganesh B. Rahinj. Critical revision: All authors reviewed the manuscript critically.

Funding

Not applicable.

Data Availability

Due to its proprietary nature, supporting data cannot be made publicly available and are available from the corresponding author upon reasonable request.

Conflict of interest

All authors are employees of Sahajanand Medical Technologies Ltd. and report no other conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesh B. Rahinj.

Additional information

Associate Editor Igor Efimov oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahinj, G.B., Chauhan, H.S., Sirivella, M.L. et al. Numerical Analysis for Non-Uniformity of Balloon-Expandable Stent Deployment Driven by Dogboning and Foreshortening. Cardiovasc Eng Tech 13, 247–264 (2022). https://doi.org/10.1007/s13239-021-00573-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00573-4

Keywords

Navigation