Skip to main content

Advertisement

Log in

In Vitro Validation of 4D Flow MRI for Local Pulse Wave Velocity Estimation

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Arterial stiffness has predictive value for cardiovascular disease (CVD). Local artery stiffness can provide insight on CVD pathology and may be useful for diagnosis and prognosis. However, current methods are invasive, require real-time expertise for measurement, or are limited by arterial region. 4D Flow MRI can non-invasively measure local stiffness by estimating local pulse wave velocity (PWV). This technique can be applied to vascular regions, previously accessible only by invasive stiffness measurement methods. MRI PWV data can also be analyzed post-exam. However, 4D Flow MRI requires validation before it is used in vivo to measure local PWV.

Methods

PWV, calculated from 4D Flow MRI and a benchtop experiment, was compared with petersons elastic modulus (PEM) of in vitro models. PEM was calculated using high-speed camera images and pressure transducers. Three transit-time algorithms were analyzed for PWV measurement accuracy and precision.

Results

PWV from 4D Flow MRI and reference benchtop experiments show strong correlation with PEM (R2 = 0.99). The cross correlation transit-time algorithm showed the lowest percent difference between 4D Flow MRI and benchtop experiments (4–7%), and the point to point of 50% upstroke algorithm had the highest transit-time vs. distance data average R2 (0.845).

Conclusion

4D Flow MRI is a feasible method for estimating local PWV in simple in vitro models and is a viable tool for clinical analysis. In addition, choice in transit-time algorithm depends on flow waveform shape and arterial region. This study strengthens the validity of 4D Flow MRI local PWV measurement in simple models. However, this technique requires validation in more complex models before it is used in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Blacher, J., A. P. Guerin, B. Pannier, S. J. Marchais, M. E. Safar, and G. M. London. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 99(18):2434–2439, 1999.

    Article  Google Scholar 

  2. Bolster, B. D., E. Atalar, C. J. Hardy, and E. R. McVeigh. Accuracy of arterial pulse-wave velocity measurement using MR. J. Magn. Reson. Imaging. 8:878–888, 1998.

    Article  Google Scholar 

  3. Boutouyrie, P., M. Briet, C. Collin, S. Vermeersch, and B. Pannier. Assessment of pulse wave velocity. Artery Res. 3:3–8, 2009.

    Article  Google Scholar 

  4. Boutouyrie, P., D. Fliser, D. Goldsmith, A. Covic, A. Wiecek, A. Ortiz, et al. Assessment of arterial stiffness for clinical and epidemiological studies: methodological considerations for validation and entry into the European Renal and Cardiovascular Medicine registry. Nephrol. Dial. Transplant. 29:232–239, 2014.

    Article  Google Scholar 

  5. Boutouyrie, P., A. I. Tropeano, R. Asmar, I. Gautier, A. Benetos, P. Lacolley, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 39:10–15, 2002.

    Article  Google Scholar 

  6. Chiu, Y. C., P. W. Arand, S. G. Shroff, T. Feldman, and J. D. Carroll. Determination of pulse wave velocities with computerized algorithms. Am. Heart J. 121:1460–1470, 1991.

    Article  Google Scholar 

  7. Cruickshank, K., L. Riste, S. G. Anderson, J. S. Wright, G. Dunn, and R. G. Gosling. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 106:2085–2090, 2002.

    Article  Google Scholar 

  8. Dogui, A., N. Kachenoura, F. Frouin, M. Lefort, A. De Cesare, E. Mousseaux, et al. Consistency of aortic distensibility and pulse wave velocity estimates with respect to the Bramwell-Hill theoretical model: a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 13(1):11, 2011.

    Article  Google Scholar 

  9. Dogui, A., A. Redheuil, M. Lefort, A. Decesare, N. Kachenoura, A. Herment, et al. Measurement of aortic arch pulse wave velocity in cardiovascular MR: comparison of transit time estimators and description of a new approach. J. Magn. Reson. Imaging. 33:1321–1329, 2011.

    Article  Google Scholar 

  10. Gu, T., F. R. Korosec, W. F. Block, S. B. Fain, Q. Turk, D. Lum, et al. PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. Am. J. Neuroradiol. 26:743–749, 2005.

    Google Scholar 

  11. Hermeling, E., K. D. Reesink, R. S. Reneman, and A. P. G. Hoeks. Measurement of local pulse wave velocity: effects of signal processing on precision. Ultrasound Med. Biol. 33:774–781, 2007.

    Article  Google Scholar 

  12. Johnson, K. M., D. P. Lum, P. A. Turski, W. F. Block, C. A. Mistretta, and O. Wieben. Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn. Reson. Med. 60:1329–1336, 2008.

    Article  Google Scholar 

  13. Laurent, S., J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27:2588–2605, 2006.

    Article  Google Scholar 

  14. Laurent, S., S. Katsahian, C. Fassot, A. I. Tropeano, I. Gautier, B. Laloux, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 34:1203–1206, 2003.

    Article  Google Scholar 

  15. London, G. M., and M. E. Safar. Arterial wall remodelling and stiffness in hypertension: heterogeneous aspects. Clin. Exp. Pharmacol. Physiol. 23:S1–S5, 1996.

    Article  Google Scholar 

  16. Lozano, R., M. Naghavi, K. Foreman, S. Lim, K. Shibuya, V. Aboyans, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380:2095–2128, 2012.

    Article  Google Scholar 

  17. Markl, M., W. Wallis, S. Brendecke, J. Simon, A. Frydrychowicz, and A. Harloff. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. Magn. Reson. Med. 63:1575–1582, 2010.

    Article  Google Scholar 

  18. Markl, M., W. Wallis, C. Strecker, B. P. Gladstone, W. Vach, and A. Harloff. Analysis of pulse wave velocity in the thoracic aorta by flow-sensitive four-dimensional MRI: reproducibility and correlation with characteristics in patients with aortic atherosclerosis. J. Magn. Reson. Imaging. 35:1162–1168, 2012.

    Article  Google Scholar 

  19. Mattace-Raso, F. U. S., T. J. M. Van Der Cammen, A. Hofman, N. M. Van Popele, M. L. Bos, M. A. D. H. Schalekamp, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 113:657–663, 2006.

    Article  Google Scholar 

  20. Meinders, J. M., L. Kornet, P. J. Brands, and A. P. Hoeks. Assessment of local pulse wave velocity in arteries using 2D distension waveforms. Ultrason. Imaging. 23:199–215, 2001.

    Article  Google Scholar 

  21. Millasseau, S. C., A. D. Stewart, S. J. Patel, S. R. Redwood, and P. J. Chowienczyk. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension. 45:222–226, 2005.

    Article  Google Scholar 

  22. Mitchell, G. F., S.-J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg, et al. Arterial stiffness and cardiovascular events: the framingham heart study. Circulation. 121:505–511, 2010.

    Article  Google Scholar 

  23. Nichols, W. W., and D. A. McDonald. Wave-velocity in the proximal aorta. Med. Biol. Eng. 10:327–335, 1972.

    Article  Google Scholar 

  24. Nichols, W., and B. Singh. Augmentation index as a measure of peripheral vascular disease state. Curr. Opin. Cardiol. 17:543–551, 2002.

    Article  Google Scholar 

  25. Papageorgiou, G. L., and N. B. Jones. Physical modelling of the arterial wall. Part 1: testing of tubes of various materials. J. Biomed. Eng. 9:153–156, 1987.

    Article  Google Scholar 

  26. Peterson, L. H., R. E. Jensen, and J. Parnell. Mechanical properties of arteries in vivo. Circ. Res. 8:622–639, 1960.

    Article  Google Scholar 

  27. Quinaglia, T., M. Z. Bensalah, E. Bollache, N. Kachenoura, G. Soulat, P. Boutouyrie, et al. Differential impact of local and regional aortic stiffness on left ventricular remodeling. J. Hypertens. 36:1, 2018.

    Article  Google Scholar 

  28. Swillens, A., L. Taelman, J. Degroote, J. Vierendeels, and P. Segers. Comparison of non-invasive methods for measurement of local pulse wave velocity using fsi-simulations and in vivo data. Ann. Biomed. Eng. 41:1567–1578, 2013.

    Article  Google Scholar 

  29. Taviani, V., A. J. Patterson, M. J. Graves, C. J. Hardy, P. Worters, M. P. F. Sutcliffe, et al. Accuracy and repeatability of fourier velocity encoded M-mode and two-dimensional cine phase contrast for pulse wave velocity measurement in the descending aorta. J. Magn. Reson. Imaging. 31:1185–1194, 2010.

    Article  Google Scholar 

  30. Tijsseling, A., and A. A. Anderson. Isebree Moens and DJ Korteweg: On the Speed of Propagation of Waves in Elastic Tubes. BHR Gr: Conf Press Surges, pp. 1–19, 2012.

    Google Scholar 

  31. Van Bortel, L. M., D. Duprez, M. J. Starmans-Kool, M. E. Safar, C. Giannattasio, J. Cockcroft, et al. Clinical applications of arterial stiffness, task force III: recommendations for user procedures. Am. J. Hypertens. 15:445–452, 2002.

    Article  Google Scholar 

  32. Van Sloten, T. T., M. T. Schram, K. Van Den Hurk, J. M. Dekker, G. Nijpels, R. M. A. Henry, et al. Local stiffness of the carotid and femoral artery is associated with incident cardiovascular events and all-cause mortality: the hoorn study. J. Am. Coll. Cardiol. 63:1739–1747, 2014.

    Article  Google Scholar 

  33. Walker, P. G., G. B. Cranney, M. B. Scheidegger, G. Waseleski, G. M. Pohost, and A. P. Yoganathan. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J. Magn. Reson. Imaging. 3:521–530, 1993.

    Article  Google Scholar 

  34. Wang, Z., Y. Yang, L. J. Yuan, J. Liu, Y. Y. Duan, and T. S. Cao. Noninvasive method for measuring local pulse wave velocity by dual pulse wave Doppler: in vitro and in vivo studies. PLoS ONE. 10:1–13, 2015.

    Google Scholar 

  35. Wentland, A. L., T. M. Grist, and O. Wieben. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc. Diagn. Ther. 4:193–206, 2014.

    Google Scholar 

  36. Wentland, A. L., O. Wieben, C. J. François, C. Boncyk, A. Munoz Del Rio, K. M. Johnson, et al. Aortic pulse wave velocity measurements with undersampled 4D flow-sensitive MRI: comparison with 2D and algorithm determination. J. Magn. Reson. Imaging. 37:853–859, 2013.

    Article  Google Scholar 

  37. Westenberg, J. J. M., E. P. Van Poelgeest, P. Steendijk, H. B. Grotenhuis, J. W. Jukema, and A. De Roos. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment. J. Cardiovasc. Magn. Reson. 14:2, 2012.

    Article  Google Scholar 

  38. World Health Organization. Cardiovascular diseases [Internet]. 2017 [cited 2018 Mar 4]. p. 1–6. http://www.who.int/mediacentre/factsheets/fs317/en/.

  39. Yang, E. Y., L. Chambless, A. R. Sharrett, S. S. Virani, X. Liu, Z. Tang, et al. Carotid arterial wall characteristics are associated with incident ischemic stroke but not coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) Study. Stroke. 43:103–108, 2012.

    Article  Google Scholar 

Download references

Conflict of interest

Timothy Ruesink, David Rutkowski, Rafael Medero and Alejandro Roldán-Alzate declare that they have no conflict of interest.

Research Involving Human and Animal Participants

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Ruesink.

Additional information

Associate Editors David A. Steinman, Francesco Migliavacca, and Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruesink, T., Medero, R., Rutkowski, D. et al. In Vitro Validation of 4D Flow MRI for Local Pulse Wave Velocity Estimation. Cardiovasc Eng Tech 9, 674–687 (2018). https://doi.org/10.1007/s13239-018-00377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-00377-z

Keywords

Navigation