Skip to main content
Log in

Meta-analysis of polymorphic variants conferring acute lymphoblastic leukemia risk in the Indian population

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Acute lymphoblastic leukemia (ALL) is a rapidly progressive bone marrow cancer in which early lymphoid precursors proliferate and replace the normal bone marrow hematopoietic cells. Although it is regarded as the most preponderant case of childhood cancer, ALL can also occur in adults. In India, ~ 6000 children are diagnosed with ALL each year. The disease etiology is complex and yet not fully elucidated. Several gene polymorphisms have been investigated across the globe, with regards to susceptibility towards ALL, often revealing contradictory or inconclusive results of genetic associations. In this meta-analysis, we have attempted to identify all the polymorphisms (and genes) tested for association with ALL from India to date to derive a more precise association of the variants with the disease risk, collating all the studies together. A meta-analysis conducted on 30 polymorphisms belonging to 19 genes identified rs3892097/CYP2D6, rs4646903/CYP1A1*2A, del1/GSTT1, rs1695/GSTP1 and rs1045642/ABCB1 to be genetic risk factors of ALL in the Indian population. Considering the association of rs3892097/CYP2D6 with ALL in dominant, recessive as well as additive models in the Indian context, further meta-analysis was done for the variant with data from across the world and the significance persisted yet. Covariates such as mean age and rural settlement were found to have an overall association with the risk of ALL. This study is the first of its kind from India, determining with better confidence the genetic risk factors ALL that may pave the way towards precision medicine and the genetic risk factors of ALL that may pave the way towards precision medicine and, thus, proper treatment of the malady.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

We agree to give the journal access to all the data that have been generated in course of this work.

Abbreviations

ALL:

Acute lymphoblastic leukemia.

GWAS:

Genome-wide association studies.

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

SNP:

Single nucleotide polymorphisms.

SNV:

Single nucleotide Variants.

FE meta-analysis:

Fixed effect meta-analysis.

RE meta-analysis:

Random effect meta-analysis.

FDR:

False discovery rate

References

  1. Abbasi S, Maleha F, Shobaki M. Acute lymphoblastic leukemia experience: epidemiology and outcome of two different regimens. Mediterr J Hematol Infect Dis. 2013;5(1):e2013024. https://doi.org/10.4084/MJHID.2013.024.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Abo-Bakr A, Mossallam G, El Azhary N, Hafez H, Badawy R. Impact of CYP1A1, GSTP1 and XRCC1 genes polymorphisms on toxicity and response to chemotherapy in childhood acute lymphoblastic leukemia. J Egypt Nat Cancer Inst. 2017;29(3):127–33. https://doi.org/10.1016/j.jnci.2017.07.002.

    Article  PubMed  Google Scholar 

  3. Adiga Sadananda MN, Chandy S, Ramachandra N, Appaji L, Aruna Kumari BS, Ramaswamy G, Savithri HS, Krishnamoorthy L. Methylenetetrahydrofolate reductase gene polymorphisms and risk of acute lymphoblastic leukemia in children. Indian J Cancer. 2010;47(1):40–5. https://doi.org/10.4103/0019-509X.58858.

    Article  Google Scholar 

  4. Alves S, Amorim A, Ferreira F, Norton L, Prata MJ. The GSTM1 and GSTT1 genetic polymorphisms and susceptibility to acute lymphoblastic leukemia in children from north Portugal. Leukemia. 2002;16(8):1565–2156.

    Article  CAS  PubMed  Google Scholar 

  5. Anderer G, Schrappe M, Brechlin AM, Lauten M, Muti P, Welte K, Stanulla M. Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukaemia. Pharmacogenetics. 2000;10(8):715–26. https://doi.org/10.1097/00008571-200011000-00006.

    Article  CAS  PubMed  Google Scholar 

  6. Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer. 2009;9(12):1–7. https://doi.org/10.1186/1471-2407-9-187.7.

    Article  Google Scholar 

  7. Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005;23(26):6306–15. https://doi.org/10.1200/JCO.2005.05.047.

    Article  CAS  PubMed  Google Scholar 

  8. Aydin-Sayitoglu M, Hatirnaz O, Erensoy N, Ozbek U. Role of CYP2D6, CYP1A1, CYP2E1, GSTT1, and GSTM1 genes in the susceptibility to acute leukemias. Am J Hematol. 2006;81(3):162–70. https://doi.org/10.1002/ajh.20434.

    Article  CAS  PubMed  Google Scholar 

  9. Baba SM, Pandith AA, Shah ZA, Geelani SA, Bhat JR, Gul A, Guru SA, El-Serehy HA, Koul AM, Mansoor S. GSTT1null and rs156697 polymorphism in GSTO2 influence the risk and therapeutic outcome of B-acute lymphoblastic leukemia patients. Front Oncol. 2021;11:714421. https://doi.org/10.3389/fonc.2021.714421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baba SM, Pandith AA, Shah ZA, Geelani SA, Mir MM, Bhat JR, Bhat GM. Impact of ABCB1 gene (C3435T/A2677G) polymorphic sequence variations on the outcome of patients with chronic myeloid leukemia and acute lymphoblastic leukemia in kashmiri population: a case-control study. Indian J Hematol Blood Transfus. 2021;37(1):21–9. https://doi.org/10.1007/s12288-020-01289-6.

    Article  PubMed  Google Scholar 

  11. Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22(4):153–60. https://doi.org/10.1136/ebmental-2019-300117.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bedi U, Singh M, Singh P, Molnar J, Khosla S, Arora R. Effects of statins on progression of coronary artery disease as measured by intravascular ultrasound. J Clin Hypertens. 2011;13(7):492–6. https://doi.org/10.1111/j.1751-7176.2011.00428.x.

    Article  Google Scholar 

  13. Bellampalli R, Vohra M, Sharma K, Bhaskaranand N, Bhat KG, Prasad K, Sharma AR, Satyamoorthy K, Rai PS. Acute lymphoblastic leukemia and genetic variations in BHMT gene: Case-control study and computational characterization. Cancer Biomark. 2017;19(4):393–401. https://doi.org/10.3233/CBM-160186.

    Article  CAS  PubMed  Google Scholar 

  14. Bhandari P, Ahmad F, Mandava S, Das BR. Association of genetic variants in ARID5B, IKZF1 and CEBPE with risk of childhood de novo B-lineage acute lymphoblastic leukemia in India. Asian Pac J Cancer Prev. 2016;17(8):3989–95.

    PubMed  Google Scholar 

  15. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97–111. https://doi.org/10.1002/jrsm.12.

    Article  PubMed  Google Scholar 

  16. Canalle R, Burim RV, Tone LG, Takahashi CS. Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen. 2004;43(2):100–9. https://doi.org/10.1002/em.20003.

    Article  CAS  PubMed  Google Scholar 

  17. Ceppi F, Langlois-Pelletier C, Gagné V, Rousseau J, Ciolino C, Lorenzo SD, Kevin KM, Cijov D, Sallan SE, Silverman LB, Neuberg D. Polymorphisms of the vincristine pathway and response to treatment in children with childhood acute lymphoblastic leukemia. Pharmacogenomics. 2014;15(8):1105–16. https://doi.org/10.2217/pgs.14.68`.

    Article  CAS  PubMed  Google Scholar 

  18. Chandy M. Childhood acute lymphoblastic leukemia in India: an approach to management in a three-tier society. Med Pediatr Oncol. 1995;25(3):197–203. https://doi.org/10.1002/mpo.2950250307.

    Article  CAS  PubMed  Google Scholar 

  19. Chauhan PS, Ihsan R, Mishra AK, Yadav DS, Saluja S, Mittal V, Saxena S, Kapur S. High order interactions of xenobiotic metabolizing genes and P53 codon 72 polymorphisms in acute leukemia. Environ Mol Mutagen. 2012;53(8):619–30. https://doi.org/10.1002/em.21723.

    Article  CAS  PubMed  Google Scholar 

  20. Devanandan HJ, Venkatesan V, Scott JX, Magatha LS, Durairaj Paul SF, Koshy T. MicroRNA 146a polymorphisms and expression in Indian children with acute lymphoblastic leukemia. Lab Med. 2019;50(3):249–53. https://doi.org/10.1093/labmed/lmy074.

    Article  Google Scholar 

  21. Dunna NR, Vure S, Sailaja K, Surekha D, Raghunadharao D, Rajappa S, Vishnupriya S. TP53 codon 72 polymorphism and risk of acute leukemia. Asian Pac J Cancer Prev. 2012;13(1):347–50. https://doi.org/10.7314/apjcp.2012.13.1.349.

    Article  PubMed  Google Scholar 

  22. Dunna NR, Vuree S, Kagita S, Surekha D, Digumarti R, Rajappa S, Satti V. Association of GSTP1 gene (I105V) polymorphism with acute leukaemia. J Genet. 2012;91(1):e60–3.

    PubMed  Google Scholar 

  23. Dunna NR, Naushad SM, Vuree S, Anuradha C, Sailaja K, Surekha D, Rao DR, Vishnupriya S. Association of thymidylate synthase 5’-UTR 28bp tandem repeat and serine hydroxymethyltransfarase C1420T polymorphisms with susceptibility to acute leukemia. Asian Pac J Cancer Prev. 2014;15(4):1719–23. https://doi.org/10.7314/apjcp.2014.15.4.1719.

    Article  PubMed  Google Scholar 

  24. Fromm MF. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci. 2004;25(8):423–9. https://doi.org/10.1016/j.tips.2004.06.002.

    Article  CAS  PubMed  Google Scholar 

  25. Gail MH, Haneuse S. Power and sample size for case-control studies. Stat Methods Med Res. 2018;27:163. https://doi.org/10.1177/0962280217737157.

    Article  MathSciNet  Google Scholar 

  26. Giorgi FM, Ceraolo C, Mercatelli D. The R language: an engine for bioinformatics and data science. Life (Basel). 2022;12(5):648. https://doi.org/10.3390/life12050648.

    Article  ADS  PubMed  Google Scholar 

  27. Gökbuget N. Treatment of older patients with acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program. 2016;2016(1):573–9. https://doi.org/10.1182/asheducation-2016.1.573.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. https://doi.org/10.1146/annurev.bi.62.070193.002125.

    Article  CAS  PubMed  Google Scholar 

  29. Guven M, Unal S, Erhan D, Ozdemir N, Baris S, Celkan T, Bostancı M, Batar B. Role of glutathione S-transferase M1, T1 and P1 gene polymorphisms in childhood acute lymphoblastic leukemia susceptibility in a Turkish population. Meta Gene. 2015;5:115–9. https://doi.org/10.1016/j.mgene.2015.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hodges RE, Minich DM. Modulation of metabolic detoxification pathways using foods and food-derived components: a scientific review with clinical application. J Nutr Metab. 2015;2015:760689. https://doi.org/10.1155/2015/760689.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000;97(7):3473–8. https://doi.org/10.1073/pnas.97.7.3473.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193–206. https://doi.org/10.1037/1082-989X.11.2.193.

    Article  PubMed  Google Scholar 

  33. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541–52. https://doi.org/10.1056/NEJMra1400972.

    Article  CAS  PubMed  Google Scholar 

  34. Hussain SR, Naqvi H, Raza ST, Ahmed F, Babu SG, Kumar A, Zaidi ZH, Mahdi F. Methylenetetrahydrofolate reductase C677T genetic polymorphisms and risk of leukaemia among the North Indian population. Cancer Epidemiol. 2012;36(4):e227–31. https://doi.org/10.1016/j.canep.2012.02.008.

    Article  CAS  PubMed  Google Scholar 

  35. Jackson M, Marks L, May GHW, Wilson JB. The genetic basis of disease [published correction appears in Essays Biochem. 2020 Oct 8;64(4):681]. Essays Biochem. 2018;62(5):643–723. https://doi.org/10.1042/EBC20170053.

  36. Jamroziak K, Młynarski W, Balcerczak E, Mistygacz M, Trelinska J, Mirowski M, Bodalski J, Robak T. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol. 2004;72(5):314–21. https://doi.org/10.1111/j.1600-0609.2004.00228.x.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang Y, Zhang R, Zheng J, Liu P, Tang G, Lv H, Zhang L, Shang Z, Zhan Y, Lv W, Shi M, Zhang R. Meta-analysis of 125 rheumatoid arthritis-related single nucleotide polymorphisms studied in the past two decades. PLoS ONE. 2012;7(12):e51571. https://doi.org/10.1371/journal.pone.0051571.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jin DH, Lamberton GR, Broome DR, Saaty H, Bhattacharya S, Lindler TU, Baldwin DD. Renal stone detection using unenhanced multidetector row computerized tomography–does section width matter? J Urol. 2009;181(6):2767–73. https://doi.org/10.1016/j.juro.2009.01.092.

    Article  PubMed  Google Scholar 

  39. Joseph T, Kusumakumary P, Chacko P, Abraham A, Pillai MR. Genetic polymorphism of CYP1A1, CYP2D6, GSTM1 and GSTT1 and susceptibility to acute lymphoblastic leukaemia in Indian children. Pediatr Blood Cancer. 2004;43(5):560–7. https://doi.org/10.1002/pbc.20074.

    Article  PubMed  Google Scholar 

  40. Joseph T, Kusumakumary P, Chacko P, Abraham A, Pillai MR. DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia. Cancer Lett. 2005;217(1):17–24. https://doi.org/10.1016/j.canlet.2004.06.055.

    Article  CAS  PubMed  Google Scholar 

  41. Joshi MB, Shirota Y, Danenberg KD, Conlon DH, Salonga DS, Herndon JE 2nd, Danenberg PV, Harpole DH Jr. High gene expression of TS1, GSTP1, and ERCC1 are risk factors for survival in patients treated with trimodality therapy for esophageal cancer. Clin Cancer Res. 2005;11(6):2215–21. https://doi.org/10.1158/1078-0432.CCR-04-1387.

    Article  PubMed  Google Scholar 

  42. Karthika C, Sureshkumar R, Zehravi M, Akter R, Ali F, Ramproshad S, Mondal B, Tagde P, Ahmed Z, Khan FS, Rahman MH, Cavalu S. Multidrug resistance of cancer cells and the vital role of P-glycoprotein. Life (Basel). 2022;12(6):897. https://doi.org/10.3390/life12060897.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim KW, Lee J, Choi SH, Huh J, Park SH. Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: a practical review for clinical researchers-part I. General guidance and tips. Korean J Radiol. 2015;16(6):1175–87. https://doi.org/10.3348/kjr.2015.16.6.1175.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim W, Cho YA, Kim DC, Lee KE. Association between genetic polymorphism of GSTP1 and toxicities in patients receiving platinum-based chemotherapy: a systematic review and meta-analysis. Pharmaceuticals (Basel). 2022;15(4):439. https://doi.org/10.3390/ph15040439.

    Article  CAS  PubMed  Google Scholar 

  45. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM. A "silent" polymorphism in the MDR1 gene changes substrate specificity [published correction appears in Science. 2007 Nov 30;318(5855):1382–3] [published correction appears in Science. 2011 oCT 7;334(6052):39]. Science. 2007;315(5811):525–528.https://doi.org/10.1126/science.1135308.

  46. Krajinovic M, Labuda D, Richer C, Karimi S, Sinnett D. Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood. 1999;93(5):1496–501.

    Article  CAS  PubMed  Google Scholar 

  47. Krajinovic M, Labuda D, Mathonnet G, Labuda M, Moghrabi A, Champagne J, Sinnett D. Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res. 2002;8(3):802–10.

    CAS  PubMed  Google Scholar 

  48. Krajinovic M, Labuda D, Sinnett D. Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenetics. 2002;12(8):655–8. https://doi.org/10.1097/00008571-200211000-00010.

    Article  CAS  PubMed  Google Scholar 

  49. Kreile M, Rots D, Piekuse L, Cebura E, Grutupa M, Kovalova Z, Lace B. Lack of association between polymorphisms in genes MTHFR and MDR1 with risk of childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2014;15(22):9707–11. https://doi.org/10.7314/apjcp.2014.15.22.9707.

    Article  PubMed  Google Scholar 

  50. Liao F, Ye Y, Yin D, Qin Y, Zhao J, Zhang W, Zhang Y, Deng Z, Wang Y, Ying B, Wang L, Gao J, Shu Y, Zhu Y, Lu X. Validations of top and novel susceptibility variants in all-age Chinese patients with acute lymphoblastic leukemia. Front Genet. 2020;11:1004. https://doi.org/10.3389/fgene.2020.01004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics. 2018;74(3):785–94. https://doi.org/10.1111/biom.12817.

    Article  MathSciNet  PubMed  Google Scholar 

  52. Misra MK, Prakash S, Moulik NR, Kumar A, Agrawal S. Genetic associations of killer immunoglobulin like receptors and class I human leukocyte antigens on childhood acute lymphoblastic leukemia among north Indians. Hum Immunol. 2016;77(1):41–6. https://doi.org/10.1016/j.humimm.2015.10.009.

    Article  CAS  PubMed  Google Scholar 

  53. Molden E, Jukić MM. CYP2D6 Reduced function variants and genotype/phenotype translations of CYP2D6 intermediate metabolizers: implications for personalized drug dosing in psychiatry. Front Pharmacol. 2021;12:650750. https://doi.org/10.3389/fphar.2021.650750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Molina O, Bataller A, Thampi N, Ribera J, Granada I, Velasco P, Fuster JL, Menendez P. Near-haploidy and low-hypodiploidy in B-cell acute lymphoblastic leukemia: when less is too much. Cancers. 2021;14(1):32. https://doi.org/10.3390/cancers14010032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moorman AV, Harrison CJ, Buck GA, Richards SM, Secker-Walker LM, Martineau M, Vance GH, Cherry AM, Higgins RR, Fielding AK, Foroni L, Paietta E, Tallman MS, Litzow MR, Wiernik PH, Rowe JM, Goldstone AH, Dewald GW. Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial. Blood. 2007;109(8):3189–97. https://doi.org/10.1182/blood-2006-10-051912.

    Article  CAS  PubMed  Google Scholar 

  56. Moulik NR, Parveen F, Kumar A, Agrawal S. Glutathione-S-transferase polymorphism and acute lymphoblastic leukemia (ALL) in north Indian children: a case-control study and meta-analysis. J Hum Genet. 2014;59(9):529–35. https://doi.org/10.1038/jhg.2014.66.

    Article  CAS  PubMed  Google Scholar 

  57. Moulik NR, Parveen F, Kumar A, Awasthi S, Agrawal S. MTHFR gene polymorphism in acute lymphoblastic leukemia among North Indian children: a case-control study and meta-analysis updated from 2011. J Hum Genet. 2014;59(7):397–404. https://doi.org/10.1038/jhg.2014.44.

    Article  CAS  Google Scholar 

  58. Nazki FH, Masood A, Banday MA, Bhat A, Ganai BA. Thymidylate synthase enhancer region polymorphism not related to susceptibility to acute lymphoblastic leukemia in the Kashmir population. Genet Mol Res. 2012;11(2):906–17. https://doi.org/10.4238/2012.April.10.6.

    Article  CAS  PubMed  Google Scholar 

  59. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22(17):R741–52. https://doi.org/10.1016/j.cub.2012.07.024.

    Article  CAS  PubMed  Google Scholar 

  60. Nida S, Javid B, Akbar M, Idrees S, Adil W, Ahmad GB. Gene variants of CYP1A1 and CYP2D6 and the risk of childhood acute lymphoblastic leukaemia; outcome of a case control study from Kashmir. India Mol Biol Res Commun. 2017;6(2):77–84.

    CAS  PubMed  Google Scholar 

  61. Nikbakht M, MalekZadeh K, Kumar Jha A, Askari M, Marwaha RK, Kaul D, Kaur J. Polymorphisms of MTHFR and MTR genes are not related to susceptibility to childhood ALL in North India. Exp Oncol. 2012;34(1):43–8.

    CAS  PubMed  Google Scholar 

  62. Perentesis JP. Why is age such an important independent prognostic factor in acute lymphoblastic leukemia? Leukemia. 1997;11(Suppl 4):S4–7.

    PubMed  Google Scholar 

  63. Perez-Andreu V, Roberts KG, Xu H, Smith C, Zhang H, Yang W, Harvey RC, Payne-Turner D, Devidas M, Cheng IM, Carroll WL, Heerema NA, Carroll AJ, Raetz EA, Gastier-Foster JM, Marcucci G, Bloomfield CD, Mrózek K, Kohlschmidt J, Stock W, Kornblau SM, Konopleva M, Paietta E, Rowe JM, Luger SM, Tallman MS, Dean M, Burchard EG, Torgerson DG, Yue F, Wang Y, Pui CH, Jeha S, Relling MV, Evans WE, Gerhard DS, Loh ML, Willman CL, Hunger SP, Mullighan CG, Yang JJ. A genome-wide association study of susceptibility to acute lymphoblastic leukemia in adolescents and young adults. Blood. 2015;125(4):680–6. https://doi.org/10.1182/blood-2014-09-595744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pietro GD, Magno LA, Rios-Santos F. Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol. 2010;6(2):153–70. https://doi.org/10.1517/17425250903427980.

    Article  CAS  PubMed  Google Scholar 

  65. Pradhan S, Sengupta M, Dutta A, Bhattacharyya K, Bag SK, Dutta C, Ray K. Indian genetic disease database. Nucleic Acids Res. 2011. https://doi.org/10.1093/nar/gkq1025.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78. https://doi.org/10.1056/NEJMra052603.

    Article  CAS  PubMed  Google Scholar 

  67. Radhakrishnan VS, Agrawal N, Bagal B, Patel I. Systematic review of the burden and treatment patterns of adult and adolescent acute lymphoblastic leukemia in India: comprehending the challenges in an emerging economy. Clin Lymphoma Myeloma Leuk. 2021;21(1):e85–98. https://doi.org/10.1016/j.clml.2020.08.023.

    Article  PubMed  Google Scholar 

  68. Rao DN, Anuradha C, Vishnupriya S, Sailaja K, Surekha D, Raghunadharao D, Rajappa S. Association of an MDR1 gene (C3435T) polymorphism with acute leukemia in India. Asian Pac J Cancer Prev. 2010;11(4):1063–6.

    PubMed  Google Scholar 

  69. Rebbeck TR. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev. 1997;6(9):733–43.

    CAS  PubMed  Google Scholar 

  70. Reddy H, Jamil K. Polymorphisms in the MTHFR gene and their possible association with susceptibility to childhood acute lymphocytic leukemia in an Indian population. Leuk Lymphoma. 2006;47(7):1333–9. https://doi.org/10.1080/10428190600562773.

    Article  CAS  PubMed  Google Scholar 

  71. Robinson K, Tiriveedhi V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front Oncol. 2020;10:265. https://doi.org/10.3389/fonc.2020.00265.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sazawal S, Chaubey R, Kaur P, Chikkara S, Kumar B, Bakshi S, Arya LS, Raina V, Das Gupta A, Saxena R. MTHFR Gene polymorphisms and the risk of acute lymphoblastic leukemia in adults and children: a case control study in India. Indian J Hematol Blood Transfus. 2014;30(4):219–25. https://doi.org/10.1007/s12288-013-0295-7.

    Article  PubMed  Google Scholar 

  73. Schnekenburger M, Karius T, Diederich M. Regulation of epigenetic traits of the glutathione S-transferase P1 gene: from detoxification toward cancer prevention and diagnosis. Front Pharmacol. 2014;5:170. https://doi.org/10.3389/fphar.2014.00170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sengupta D, Banerjee S, Mukhopadhyay P, Mitra R, Chaudhuri T, Sarkar A, Bhattacharjee G, Nath S, Roychoudhury S, Bhattacharjee S, Sengupta M. A comprehensive meta-analysis and a case–control study give insights into genetic susceptibility of lung cancer and subgroups. Sci Rep. 2021;11(1):14572. https://doi.org/10.1038/s41598-021-92275-z.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shah PP, Saurabh K, Pant MC, Mathur N, Parmar D. Evidence for increased cytochrome P450 1A1 expression in blood lymphocytes of lung cancer patients. Mutat Res-Fund Mol M. 2009;2(11):74–8. https://doi.org/10.1016/j.mrfmmm.2009.07.006.

    Article  CAS  Google Scholar 

  76. Shapoo NS, Masood A, Bhat JR, Bhatia AS, Shah IA, Ganai BA. CYP2D6 rs35742686 and rs3892097 gene polymorphisms and childhood acute lymphoblastic leukemia: relation to disease susceptibility in Kashmiri children. J Pediatr Genet. 2021;11(3):213–20. https://doi.org/10.1055/s-0041-1723975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shimada T, Yamazaki H, Mimura M, Wakamiya N, Ueng YF, Guengerich FP, Inui Y. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos. 1996;24:515–22.

    CAS  PubMed  Google Scholar 

  78. Silveira VD, Canalle R, Scrideli CA, Queiroz RG, Tone LG. Role of the CYP2D6, EPHX1, MPO, and NQO1 genes in the susceptibility to acute lymphoblastic leukemia in Brazilian children. Environ Mol Mutagen. 2010;51(1):48–56. https://doi.org/10.1002/em.20510.

    Article  CAS  PubMed  Google Scholar 

  79. Sinnett D, Krajinovic M, Labuda D. Genetic susceptibility to childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2000;1(1):447–62. https://doi.org/10.3109/10428190009059264.

    Article  Google Scholar 

  80. Smith M, Arthur D, Camitta B, Carroll AJ, Crist W, Gaynon P, Gelber R, Heerema N, Korn EL, Link M, Murphy S, Pui CH, Pullen J, Reamon G, Sallan SE, Sather H, Shuster J, Simon R, Trigg M, Tubergen D, Uckun F, Ungerleider R. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. J Clin Oncol. 1996;14(1):18–24. https://doi.org/10.1200/JCO.1996.14.1.18.

    Article  CAS  PubMed  Google Scholar 

  81. Sood S, Das R, Trehan A, Ahluwalia J, Sachdeva MU, Varma N, Bansal D, Marwaha RK. Methylenetetrahydrofolate reductase gene polymorphisms: association with risk for pediatric acute lymphoblastic leukemia in north Indians. Leuk Lymphoma. 2010;51(5):928–32. https://doi.org/10.3109/10428191003719023.

    Article  CAS  PubMed  Google Scholar 

  82. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54(10):1046–55. https://doi.org/10.1016/s0895-4356(01)00377-8.

    Article  CAS  PubMed  Google Scholar 

  83. Suneetha KJ, Nancy KN, Rajalekshmy KR, Sagar TG, Rajkumar T. Role of GSTM1 (Present/Null) and GSTP1 (Ile105Val) polymorphisms in susceptibility to acute lymphoblastic leukemia among the South Indian population. Asian Pac J Cancer Prev. 2008;9(4):733–6.

    CAS  PubMed  Google Scholar 

  84. Suneetha KJ, Nancy KN, Rajalekshmy KR, Rama R, Sagar TG, Rajkumar T. Role of glutathione-s-transferase and CYP1A1*2A polymorphisms in the therapy outcome of south Indian acute lymphoblastic leukemia patients. Indian J Med Paediatr Oncol. 2011;32(1):25–9. https://doi.org/10.4103/0971-5851.81886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tebein E, Elderdery AY. Genetic polymorphisms of xenobiotics-metabolizing enzymes contributing to leukemia. Leukemia - from biology to clinic. IntechOpen. 2023. https://doi.org/10.5772/intechopen.107324.

    Article  Google Scholar 

  86. Ueda K, Cardarelli C, Gottesman MM, Pastan I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A. 1987;84(9):3004–8. https://doi.org/10.1073/pnas.84.9.3004.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vijayakrishnan J, Qian M, Studd JB, Yang W, Kinnersley B, Law PJ, Broderick P, Raetz EA, Allan J, Pui CH, Vora A, Evans WE, Moorman A, Yeoh A, Yang W, Li C, Bartram CR, Mullighan CG, Zimmerman M, Hunger SP, Schrappe M, Relling MV, Stanulla M, Loh ML, Houlston RS, Yang JJ. Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk. Nat Commun. 2019;10(1):5348. https://doi.org/10.1038/s41467-019-13069-6.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  88. Wang T, Arifoglu P, Ronai Z, Tew KD. Glutathione S-transferase P1–1 (GSTP1–1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem. 2001;276(24):20999–1003. https://doi.org/10.1074/jbc.M101355200.

    Article  CAS  PubMed  Google Scholar 

  89. Wang Y, Miller S, Roulston D, Bixby D, Shao L. Genome-wide single-nucleotide polymorphism array analysis improves prognostication of acute lymphoblastic leukemia/lymphoma. J Mol Diagn. 2016;18(4):595–603. https://doi.org/10.1016/j.jmoldx.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  90. Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28(3):249–68. https://doi.org/10.1007/BF02977789.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang H, Zhang Z, Li G. ABCB1 polymorphism and susceptibility to acute lymphoblastic leukemia: a meta analysis. Int J Clin Exp Med. 2015;8(5):7585–91.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely acknowledge Prof. Anshuman Lahiri (Dept. of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata ) for his critical reading and correcting the manuscript.

Funding

N/A.

Author information

Authors and Affiliations

Authors

Contributions

SS and DS: Text mining, analysis and drafting of the manuscript; SB and BD: Text mining and curating and formatting the data files; MS: conceptualisation of the work, critical reading and correcting the manuscript and overall supervision;

Corresponding author

Correspondence to Mainak Sengupta.

Ethics declarations

Conflict of interest

N/A.

Ethical approval

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Somnath Paul; Reviewers: Nilanjana Banerjee, Shagun Shukla, Ishita Rehman.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, S., Sengupta, D., Banerjee, S. et al. Meta-analysis of polymorphic variants conferring acute lymphoblastic leukemia risk in the Indian population. Nucleus (2024). https://doi.org/10.1007/s13237-024-00466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13237-024-00466-6

Keywords

Navigation