Skip to main content

Advertisement

Log in

Association of CD209 promoter variants and tuberculosis infection susceptibility, AIDS development, and treatment response outcomes among the HIV-1 Moroccan population

  • RESEARCH REPORT
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

The DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) molecules located on the surface of Dendritic Cell subsets showed high-affinity binding to HIV-1 and Mycobacterium tuberculosis (Mtb). It is exploited by HIV-1 and Mtb as a part of their immune evasion strategy. In this study, we explored how variations in the CD209 gene, which encodes for DC-SIGN, may be linked to the development of tuberculosis (TB) in individuals with HIV-1 infection. Additionally, we examined their potential association with the progression of AIDS and the treatment response outcome in the Moroccan population.Two single nucleotide polymorphisms in the CD209 promoter − 336A>G (rs4804803) and − 139G>A (rs2287886) were investigated. Two hundred eighteen Moroccan patients living with HIV-1 were genotyped using direct DNA sequencing. Among the 218 patients, 90 were found to have a co-infection with Mtb. We categorized the patients based on their TB status into two groups: those with HIV-1 infection and without TB (HIV-1+/TB) and those with both HIV-1 infection and TB (HIV-1+/TB+). We further classified them based on their AIDS status into two groups: AIDS and Non-AIDS patients.Our results revealed that genotype and allele frequencies of the − 336A>G and − 139G>A polymorphisms were not significantly different between HIV-1+/TB and HIV-1+/TB+ patients (p > 0.05). Likewise, the development of AIDS does not appear to be affected by these two SNPs either (p > 0.05). Haplotype analysis showed that none of the 4 possible haplotypes is associated with HIV-1 and TB co-infection (p > 0.05). Interestingly, the analysis of the − 139G>A genotype distribution according to the HIV-1 viral load showed an improvement in patients with AG and GG genotypes, after antiretroviral therapy, compared to AA patients (p = 0.0069 and p = 0.0476; respectively). Overall, − 336A>G and − 139G>A polymorphisms do not influence the susceptibility of HIV-1-infected individuals to develop TB and AIDS. However, − 139G>A polymorphism may affect the response to treatment as measured by RNA viral load levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Appelmelk BJ, van Die I, van Vliet SJ, Vandenbroucke-Grauls CMJE, Geijtenbeek TBH, van Kooyk Y. Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J Immunol. 2003;170:1635–9. https://doi.org/10.4049/jimmunol.170.4.1635.

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52. https://doi.org/10.1038/32588.

    Article  CAS  PubMed  Google Scholar 

  3. Banerjee A, Chitnis UB, Jadhav SL, Bhawalkar JS, Chaudhury S. Hypothesis testing, type I and type II errors. Ind Psychiatry J. 2009;18:127. https://doi.org/10.4103/0972-6748.62274.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barreiro LB, Neyrolles O, Babb CL, Tailleux L, Quach H, McElreavey K, van Helden PD, Hoal EG, Gicquel B, Quintana-Murci L. Promoter variation in the DC-SIGN–encoding gene CD209 is associated with tuberculosis. PLoS Med. 2006;3:e20. https://doi.org/10.1371/journal.pmed.0030020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ben-Ali M, Barreiro LB, Chabbou A, Haltiti R, Braham E, Neyrolles O, Dellagi K, Gicquel B, Quintana-Murci L, Barbouche M-R. Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients. Hum Immunol. 2007;68:908–12. https://doi.org/10.1016/j.humimm.2007.09.003.

    Article  CAS  PubMed  Google Scholar 

  6. Chang K, Deng S, Lu W, Wang F, Jia S, Li F, Yu L, Chen M. Association between CD209 − 336A/G and − 871A/G polymorphisms and susceptibility of tuberculosis: a meta-analysis. PLoS ONE. 2012;7:e41519. https://doi.org/10.1371/journal.pone.0041519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Castro KG, Ward JW, Slutsker L, Buehler JW, Jaffe HW, Berkelman RL, from National Center for Infectious Diseases Division of HIV/AIDS; and Curran JW, from Office of the Director Associate Director for HIV/AIDS. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recomm Rep;1993;41:1–19

    Google Scholar 

  8. Geijtenbeek TB, den Dunnen J, Gringhuis SI. Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiol. 2009;4:879–90. https://doi.org/10.2217/fmb.09.51.

    Article  CAS  PubMed  Google Scholar 

  9. Geijtenbeek TBH, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GCF, Middel J, Cornelissen ILMHA, Nottet HSLM, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell. 2000;100:587–97. https://doi.org/10.1016/S0092-8674(00)80694-7.

    Article  CAS  PubMed  Google Scholar 

  10. Geijtenbeek TBH, Torensma R, van Vliet SJ, van Duijnhoven GCF, Adema GJ, van Kooyk Y, Figdor CG. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 2000;100:575–85. https://doi.org/10.1016/S0092-8674(00)80693-5.

    Article  CAS  PubMed  Google Scholar 

  11. Geijtenbeek TBH, van Vliet SJ, Koppel EA, Sanchez-Hernandez M, Vandenbroucke-Grauls CMJE, Appelmelk B, van Kooyk Y. Mycobacteria target DC-SIGN to suppress dendritic cell function. J Exp Med. 2003;197:7–17. https://doi.org/10.1084/jem.20021229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gilks CF, Crowley S, Ekpini R, Gove S, Perriens J, Souteyrand Y, Sutherland D, Vitoria M, Guerma T, De Cock K. The WHO public-health approach to antiretroviral treatment against HIV in resource-limited settings. Lancet. 2006;368:505–10. https://doi.org/10.1016/S0140-6736(06)69158-7.

    Article  PubMed  Google Scholar 

  13. Gómez LM, Anaya J-M, Sierra-Filardi E, Cadena J, Corbí Á, Martín J. Analysis of DC-SIGN (CD209) functional variants in patients with tuberculosis. Hum Immunol. 2006;67:808–11. https://doi.org/10.1016/j.humimm.2006.07.003.

    Article  CAS  PubMed  Google Scholar 

  14. Green MR, Sambrook J, Sambrook J. Molecular cloning: a laboratory manual. 4th ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2012.

    Google Scholar 

  15. Gringhuis SI, den Dunnen J, Litjens M, van het Hof B, van Kooyk Y, Geijtenbeek TBH. C-type lectin DC-SIGN modulates toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity. 2007;26:605–16. https://doi.org/10.1016/j.immuni.2007.03.012.

    Article  CAS  PubMed  Google Scholar 

  16. Kettani AE, Jebbar S, Takourt B, Maaloum F, Diraa O, Farouqi B, Zerouali K, Filali KME. Co-infection VIH chez les tuberculeuxsuivis au service des maladies infectieuses du CHU Ibn Rochd–Casablanca. Pan Afr Med J. 2018. https://doi.org/10.11604/pamj.2018.30.276.13913.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koizumi Y, Kageyama S, Fujiyama Y, Miyashita M, Lwembe R, Ogino K, Shioda T, Ichimura H. RANTES −28G delays and DC-SIGN − 139C enhances AIDS progression in HIV type 1-infected Japanese hemophiliacs. AIDS Res Hum Retrovir. 2007;23:713–9. https://doi.org/10.1089/aid.2006.0225.

    Article  CAS  PubMed  Google Scholar 

  18. van Kooyk Y, Geijtenbeek TBH. DC-SIGN: escape mechanism for pathogens. Nat Rev Immunol. 2003;3:697–709. https://doi.org/10.1038/nri1182.

    Article  CAS  PubMed  Google Scholar 

  19. Lozach P-Y, Nobile C, Altmeyer R, Schwartz O. DC-SIGN : un récepteur viral à large spectre. Virologie. 2004;8:113–24.

    Google Scholar 

  20. Lugo-Villarino G, Troegeler A, Balboa L, Lastrucci C, Duval C, Mercier I, Bénard A, Capilla F, Al Saati T, Poincloux R, Kondova I, Verreck FAW, Cougoule C, Maridonneau-Parini I, del Sasiain MC, Neyrolles O. The C-type lectin receptor DC-SIGN has an anti-inflammatory role in human M(IL-4) macrophages in response to Mycobacterium tuberculosis. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.01123.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martin MP, Lederman MM, Hutcheson HB, Goedert JJ, Nelson GW, van Kooyk Y, Detels R, Buchbinder S, Hoots K, Vlahov D, O’Brien SJ, Carrington M. Association of DC-SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection. J Virol. 2004;78:14053–6. https://doi.org/10.1128/JVI.78.24.14053-14056.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mason C, Tarr A. Human lectins and their roles in viral infections. Molecules. 2015;20:2229–71. https://doi.org/10.3390/molecules20022229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Netgen Co-infection tuberculose et VIH: enjeuxthérapeutiques. In: Revue Médicale Suisse. https://www.revmed.ch/RMS/2011/RMS-318/Co-infection-tuberculose-et-VIH-enjeux-therapeutiques. Accessed 28 Dec 2020

  24. Ni X, Austin M, Langridge T, Bojaxhi P, Bijani P, Wang X, Duvic M. CD209+ monocyte-derived myeloid dendritic cells were increased in patients with leukemic cutaneous T-cell lymphoma undergoing extracorporeal photopheresis via the CELLEXTM system. Photodermatol Photoimmunol Photomed. 2020;36:290–8. https://doi.org/10.1111/phpp.12552.

    Article  CAS  PubMed  Google Scholar 

  25. Pugliese P, Cuzin L, Enel P, Agher R, Alfandari S, Billaud E, Druard P, Duvivier C, Perez M, Salmi D, Pradier C. NADIS 2000, development of an electronic medical record for patients infected by HIV, HBV and HCV. Presse Med. 2003;32:299–303.

    CAS  PubMed  Google Scholar 

  26. Qian Y-W, Li C, Jiang A-P, Ge S, Gu P, Fan X, Li T-S, Jin X, Wang J-H, Wang Z-L. HIV-1 gp120 glycoprotein interacting with dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) down-regulates tight junction proteins to disrupt the blood retinal barrier and increase its permeability. J Biol Chem. 2016;291:22977–87. https://doi.org/10.1074/jbc.M116.744615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sakuntabhai A, Turbpaiboon C, Casadémont I, Chuansumrit A, Lowhnoo T, Kajaste-Rudnitski A, Kalayanarooj SM, Tangnararatchakit K, Tangthawornchaikul N, Vasanawathana S, Chaiyaratana W, Yenchitsomanus P, Suriyaphol P, Avirutnan P, Chokephaibulkit K, Matsuda F, Yoksan S, Jacob Y, Lathrop GM, Malasit P, Desprès P, Julier C. A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet. 2005;37:507–13. https://doi.org/10.1038/ng1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Selvaraj P, Alagarasu K, Swaminathan S, Harishankar M, Narendran G. CD209 gene polymorphisms in south Indian HIV and HIV-TB patients. Infect Genet Evol. 2009;9:256–62. https://doi.org/10.1016/j.meegid.2008.12.003.

    Article  CAS  PubMed  Google Scholar 

  29. da Silva RC, Segat L, da Cruz HLA, Schindler HC, Montenegro LML, Crovella S, Guimarães RL. Association of CD209 and CD209L polymorphisms with tuberculosis infection in a Northeastern Brazilian population. Mol Biol Rep. 2014;41:5449–57. https://doi.org/10.1007/s11033-014-3416-y.

    Article  CAS  PubMed  Google Scholar 

  30. Tailleux L, Gicquel B, Neyrolles O. DC-SIGN, un récepteur clé du bacille de la tuberculose ? Med Sci (Paris). 2003;19:658–60. https://doi.org/10.1051/medsci/20031967658.

    Article  PubMed  Google Scholar 

  31. Tailleux L, Schwartz O, Herrmann J-L, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O. DC-SIGN Is the major Mycobacterium tuberculosisreceptor on human dendritic cells. J Exp Med. 2003;197:121–7. https://doi.org/10.1084/jem.20021468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tuberculosis (TB). https://www.who.int/news-room/fact-sheets/detail/tuberculosis. Accessed 19 Mar 2022

  33. Vannberg FO, Chapman SJ, Khor CC, Tosh K, Floyd S, Jackson-Sillah D, Crampin A, Sichali L, Bah B, Gustafson P, Aaby P, McAdam KPWJ, Bah-Sow O, Lienhardt C, Sirugo G, Fine P, Hill AVS. CD209 genetic polymorphism and tuberculosis disease. PLoS ONE. 2008;3:e1388. https://doi.org/10.1371/journal.pone.0001388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yi L, Zhang K, Mo Y, Zhen G, Zhao J. The association between CD209 gene polymorphisms and pulmonary tuberculosis susceptibility: a meta-analysis. Int J Clin Exp Pathol. 2015;8:12437–45.

    PubMed  PubMed Central  Google Scholar 

  35. Fiche d’information Dernières statistiques sur l’état de l’épidémie de sida. https://www.unaids.org/fr/resources/fact-sheet. 2020. Accessed 13 Jan 2021

  36. Plan stratégique national pour la prévention et le contrôle de la tuberculose au Maroc 2018–2021. https://www.smmg.ma/publications/documents/1-programme-national-de-lutte-contre-la-tuberculose/file.html. Accessed 23 Dec 2021

Download references

Acknowledgements

The authors are deeply indebted to all subjects for their participation in this study. The study was supported by Institut Pasteur du Maroc. We are particularly grateful and have a great honor to have worked with the deceased FAYSSEL Naouar Ph.D.

Author information

Authors and Affiliations

Authors

Contributions

HB wrote the manuscript, HB, NF and LW conceived and designed the experiments, HB andd LA performed experiments, RB and AO, MS and LM helped in sample collection; KMEF and AO contributed the clinical data; ASMB helped in the statistical analysis and the interpretation of data, IZ facilitated drafting editing, AK and LW did final editing. All authors discussed the results and contributed to the final manuscript, and consented to publish.

Corresponding author

Correspondence to Hanâ Baba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to disclose.

Ethical approval and informed consent

This study was conducted in adherence to ethical standards and guidelines. All human research participants were treated in accordance with the principles outlined in the 1975 Declaration of Helsinki for human research. Ethical approval for this study was granted by the biomedical research at Mohammed V University at Rabat, Morocco with the given registration number N°24/18. Informed consent was obtained from all human participants, and all personal information was handled in compliance with data protection regulations. Privacy and confidentiality were rigorously maintained, and all data were de-identified and analyzed anonymously.

Additional information

Corresponding Editor: Sandipan Brahma; Reviewer: Elizabeth Ryan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, H., Fayssel, N., Bouqdayr, M. et al. Association of CD209 promoter variants and tuberculosis infection susceptibility, AIDS development, and treatment response outcomes among the HIV-1 Moroccan population. Nucleus (2023). https://doi.org/10.1007/s13237-023-00453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13237-023-00453-3

Keywords

Navigation