Skip to main content
Log in

Gamma irradiation induced multiple chromosome interchanges in Hordeum vulgare L. (Poaceae): meiotic characterization and their implications on pollen fertility

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Barley (Hordeum vulgare L.) is an important cereal crop with 2n = 2x = 14 chromosomes. Gamma irradiation treatments to barley seeds successfully induced four multiple translocation heterozygotes (T-1, T-2 and T-3 from 25 kR, and T-4 from 20 kR) in M1 generation. In meiosis I, microsporocytes of T-1, T-2 and T-3 heterozygotes showed 2 rings/chains of four chromosomes, whereas T-4 displayed a ring/chain of six chromosomes. In this study, quadrivalents showed preponderance of ring configurations (ranged from 63.27 to 69.42%), while majority of hexavalents revealed chain configurations (63.41%). Due to meiotic instability, hexavalents sometimes gets dissociated into pentavalents, quadrivalents, trivalents along with univalents and bivalents. Assessment of orientation pattern of interchange complexes in the heterozygotes indicated alternate disjunction to be more frequent than adjacent type of disjunction. Presumably, involvement of more number of non-homologous chromosomes in translocation heterozygotes resulted in increased chromosome irregularities during meiotic segregation which ultimately led to much higher pollen sterility and concomitant decrease in growth and seed formation. In addition, pollen sterility (ranged from 47.97 to 58.09%) showed positive and significant correlation (r2 = 0.6222) with adjacent segregation of multiples (37.84–44.61%) in translocation heterozygotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahirwar R, Verma RC. Ethyl methane sulphonate (EMS) induced translocation and inversion heterozygote in Allium cepa L. Cytologia. 2016;81:149–53.

    Article  CAS  Google Scholar 

  2. Brar DS, Minocha JL. Multiple chromosomal interchanges in pearl millet. Theor Appl Genet. 1982;61:105–8.

    Article  CAS  Google Scholar 

  3. Burnham CR. Chromosomal interchanges in plants. Bot Rev. 1956;22:419–552.

    Article  Google Scholar 

  4. Datta AK, Ghosh A, Sengupta S. Highly unstable male meiosis in two aberrant plants isolated from the mutant population of Nigella damascene L. (love-in-a-mist). Cytologia. 2003;68:383–8.

    Article  Google Scholar 

  5. Farre A, Cuadrado A, Lacasa-Benito I, Cistue L, Schubert I, Comadran J, Jansen J, Romagosa I. Genetic characterization of a reciprocal translocation present in a widely grown barley variety. Mol Breed. 2012;30:1109–19.

    Article  CAS  Google Scholar 

  6. Ghosh A, Datta AK. Gamma-rays induced reciprocal translocation in Nigella damascene L. (love-in-a-mist). Caryologia. 2006;59:31–6.

    Article  Google Scholar 

  7. Goyal S, Verma RC. Gamma ray and ethyl methane sulphonate induced translocation and inversion heterozygote in Lens culinaris Medik (Lentil). Cytologia. 2015;80:231–5.

    Article  CAS  Google Scholar 

  8. Hammer O, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:9.

    Google Scholar 

  9. Jauhar PP. Induction of multiple interchanges in pearl millet, Pennisetum typhoides. Theor Appl Genet. 1974;44:58–62.

    Article  CAS  Google Scholar 

  10. Kakeda K, Miyahara S. Cytogenetical analyses of reciprocal translocations in barley. Bull Fac Bioresour. 1995;14:1–24.

    Google Scholar 

  11. Khah MA, Verma RC. Cytological characterization of induced multiple translocation heterozygote in pearl millet (Pennisetum glaucum L.). Cytologia. 2017;82:443–7.

    Article  Google Scholar 

  12. Kumar G, Singh V. Meiotic behavior of induced translocation heterozygote in pearl millet (Pennisetum typhoides). Cytologia. 2003;68:245–8.

    Article  Google Scholar 

  13. Lal J, Srinivasachar D. Induction of segmental interchanges in pearl millet (Pennisetum typhoides). Theor Appl Genet. 1979;54:27–32.

    Article  CAS  Google Scholar 

  14. Prasad G. Chromosome configurations and sterility in intercrosses between homozygous interchanges involving same and different chromosomes in barley (Hordeum vulgare L.). Cytologia. 1982;47:117–24.

    Article  Google Scholar 

  15. Rickards GK. Orientation behavior of chromosome multiples of interchange (reciprocal translocation) heterozygotes. Annu Rev Genet. 1983;17:443–98.

    Article  CAS  Google Scholar 

  16. Sanamyan MF, Rakhmatullina EM. Cytogenetic analysis of translocations in cotton. Plant Breed. 2003;122:511–6.

    Article  Google Scholar 

  17. Singh RJ. Plant cytogenetics. 2nd ed. London: CRC Press; 2003.

    Google Scholar 

  18. Sisodia NS, Shebeski LH. Synthesis of complete interchange stocks in barley (H. vulgare L.). Can J Genet Cytol. 1965;7:164–70.

    Article  Google Scholar 

  19. Sybenga J. Meiotic configurations: a source of information for estimating genetic parameters. Berlin: Springer; 1975.

    Book  Google Scholar 

  20. Sybenga J. Orientation of interchange multiples in Secale cereale. Heredity. 1968;23:73–9.

    Article  Google Scholar 

  21. Talukdar D, Biswas AK. Seven different primary trisomics in grass pea (Lathyrus sativus L.) I. Cytogenetic characterization. Cytologia. 2007;72:385–96.

    Article  Google Scholar 

  22. Talukdar D. Reciprocal translocations in grass pea (Lathyrus sativus L.): pattern of transmission, detection of multiple interchanges and their independence. J Hered. 2010;101:169–76.

    Article  CAS  Google Scholar 

  23. Verma RC, Khah MA. Assessment of gamma rays induced cytotoxicity in common wheat (Triticum aestivum L.). Cytologia. 2016;81:41–5.

    Article  CAS  Google Scholar 

  24. Verma RC, Raina SN. Cytogenetics of Crotalaria IV. Induced translocation lines in C. juncea. Nucleus. 1990;33:11–4.

    Google Scholar 

  25. Verma RC, Shrivastava P. Radiation induced reciprocal translocations in Safflower (Carthamus tinctorius L.). Cytologia. 2014;79:541–5.

    Article  Google Scholar 

Download references

Acknowledgements

MA Khah is highly thankful to the Department of Biotechnology (DBT) New Delhi, India, for providing financial assistance during the study under the project (Sanction No. BT/PR7866/NDB/39/272/2013) entitled “Network programme for enrichment and update of plant chromosome database for spermatophytes and archegoniate”. Authors also wish to acknowledge the anonymous reviewers for editing the manuscript thoroughly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mushtaq Ahmad Khah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khah, M.A., Verma, R.C. Gamma irradiation induced multiple chromosome interchanges in Hordeum vulgare L. (Poaceae): meiotic characterization and their implications on pollen fertility. Nucleus 63, 151–157 (2020). https://doi.org/10.1007/s13237-019-00292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-019-00292-1

Keywords

Navigation