Skip to main content
Log in

Dynamics of the spatial orientation of the pericentromeric heterochromatin regions in the polytene chromosomes of ovarian nurse cells in the Drosophila melanogaster (Diptera: Drosophilidae) oogenesis

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

The spatial organization of polytene chromosomes and the association of their pericentromeric regions in the Drosophila melanogaster nurse cells during oogenesis have been examined by 3D-immunofluorescence microscopy. All nurse cell chromosomes are shown to contact the nuclear membrane with their pericentromeric regions, and the X chromosome additionally with its telomeric region. Three morphological types of the associations of the nurse cell chromosome pericentromeric regions in the nuclear space are observed: (1) the pericentromeric regions of chromosomes 2, 3, and 4 contact the nuclear membrane at one pole of the nucleus, while the pericentromeric region of the X chromosome does so at the other pole (morphotype I); (2) the pericentromeric regions of chromosomes X, 2, and 3 are separated from each other in the nuclear space and contact the nuclear membrane (morphotype II); and (3) the pericentromeric region of chromosome 2 contacts the nuclear membrane at one pole of the nucleus, while the pericentromeric regions of chromosomes X, 3, and 4 contact the membrane at the other pole (morphotype III). The author, therefore, proposes that the nurse cell nuclei with morphotype I are prevalent at the early stages of oogenesis, while the nurse cell nuclei with morphotype III are most abundant at the late stages. The dynamics of associations of the pericentromeric chromosome regions in the nuclear space of D. melanogaster ovarian nurse cells in the oogenesis demonstrated that there may be some functional relationship between the 3-D organization of the nurse cell chromosomes and the organization of the nucleolus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aizenshtadt TB, Baranov VS, Borovkov AYu. The current problems in oogenesis. Moscow: Nauka; 1977.

    Google Scholar 

  2. Alcobia I, Dilao R, Parreira L. Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. Blood. 2000;95:1608–15.

    CAS  PubMed  Google Scholar 

  3. Ananiev EV, BarskyVE Ilyin YV, Churikov A. Localization of nucleoli in Drosophila melanogaster polytene chromosomes. Chromosoma (Berl). 1981;81:619–28.

    CAS  Google Scholar 

  4. Berr A, Pecinka A, Meister A, Kreth G, Fuchs J, Blattner FR, Lysak MA, Schubert I. Chromosome arrangement and nuclear architecture but not centromeric sequences are conserved between Arabidopsis thaliana and Arabidopsis lyrata. Plant J. 2006;48:771–83.

    CAS  PubMed  Google Scholar 

  5. Boikova TV, Orlando V, Lupo R, Bogachev SS. M/SAR elements of the Bithorax complex of Drosophila melanogaster. Genetika (Mosk). 2005;41:1–12.

    Google Scholar 

  6. Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Muller S, Eils R, Cremer C, Speicher MR, Cremer T. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 2005. https://doi.org/10.1371/journal.pbio.0030157.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Branco M, Pombo A. Chromosome organization: new facts, new models. Trends Cell Biol. 2007;17:127–34.

    CAS  PubMed  Google Scholar 

  8. Capell BC, Collins FS. Human laminopathies: nuclei gone genetically awry. Nat Rev Genet. 2006;7:940–52.

    CAS  PubMed  Google Scholar 

  9. Chubb JR, Boyle S, Perry P, Bickmore WA. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol. 2002;12:439–45.

    CAS  PubMed  Google Scholar 

  10. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2:292–301.

    CAS  PubMed  Google Scholar 

  11. Cremer T, Cremer M. Chromosome territories. Cold Spring Harb Perspect Biol. 2010. https://doi.org/10.1101/cshperspect.a003889.

    Article  PubMed  Google Scholar 

  12. Cremer T, Cremer M, Dietzel S, Muller S, Solovei I, Fakan S. Chromosome territories—a functional nuclear landscape. Curr Opin Cell Biol. 2006;18:307–16.

    CAS  PubMed  Google Scholar 

  13. Croft JA, Bridger JM, Boyle S, Perry P, Teague P, Bickmore WA. Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol. 1999;145:1119–31.

    CAS  PubMed  Google Scholar 

  14. Csink AK, Henikoff S. Large-scale chromosomal movements during interphase progression in Drosophila. J Cell Biol. 1998;143:13–22.

    CAS  PubMed  Google Scholar 

  15. Dapples CC, King RC. The development of the nucleolus of the ovarian nurse cell of Drosophila melanogaster. Zellforsch Mikrosk Anat. 1970;103:34–47.

    CAS  Google Scholar 

  16. De Boni U. The interphase nucleus as a dynamic structure. Int Rev Cytol. 1994;150:149–71.

    PubMed  Google Scholar 

  17. De Boni U, Mintz AH. Curvilinear, three-dimensional motion of chromatin domains and nucleoli in neuronal interphase nuclei. Science. 1986;234:863–6.

    PubMed  Google Scholar 

  18. Dehghani H, Dellaire G, Bazett-Jones DP. Organization of chromatin in the interphase mammalian cell. Micron. 2005;36:95–108.

    PubMed  Google Scholar 

  19. Dej KJ, Spradling AC. Theendocycle controls nurse cell polytene chromosome structure during Drosophila oogenesis. Development. 1999;126:293–303.

    CAS  PubMed  Google Scholar 

  20. Del Prete S, Arpon J, Sakai K, Andrey P, Gaudin V. Nuclear architecture and chromatin dynamics in interphase nuclei of Arabidopsis thaliana. Cytogenet Genome Res. 2014. https://doi.org/10.1159/000363724.

    Article  PubMed  Google Scholar 

  21. Fransz P, De Jong JH, Lysak M, Castiglione MR, Schubert I. Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. Proc Natl Acad Sci USA. 2002;99:14584–9.

    CAS  PubMed  Google Scholar 

  22. Fritz A, Barutcu AR, Martin-Buley L, van Wijnen AJ, Zaidi SK, Imbalzano AN, Lian JB, Stein JL, Stein GS. Chromosomes at work: organization of chromosome territories in the interphase nucleus. J Cell Biochem. 2016;117:9–19.

    CAS  PubMed  Google Scholar 

  23. Gavrilov AA, Razin SV. Compartmentalization of the cell nucleus and spatial organization of the genome. Mol Biol. 2015;49:26–45.

    CAS  Google Scholar 

  24. Gavrilov AA, Razin SV, Iarovaia OV. C-methods to study 3D organization of the eukaryotic genome. Biopolym Cell. 2012;28:245–51.

    CAS  Google Scholar 

  25. Getzenberg RH, Pienta KJ, Ward WS, Coffey DS. Nuclear structure and the three-dimensional organization of DNA. J Cell Biochem. 1991;47:289–99.

    CAS  PubMed  Google Scholar 

  26. Glazkov MV. A loop-domain arrangement of the genes in eukaryotic chromosomes. Mol Biol. 1995;29:965–82.

    CAS  Google Scholar 

  27. Gorkin DU, Leung D, Ren B. The 3D genome in transcriptional regulation and pluripotency. Stem Cell. 2014;14:762–75.

    CAS  Google Scholar 

  28. Glazkov MV. Association of chromosomes with the nuclear membrane and the orderliness of the spatial organization of genetic material in the interphase nucleus. Tsitol Genet. 1999;33:79–88.

    CAS  PubMed  Google Scholar 

  29. Guo T, Fang Y. Functional organization and dynamics of the cell nucleus. Front Plant Sci. 2014. https://doi.org/10.3389/fpls.2014.00378.

    Article  PubMed  Google Scholar 

  30. Gushchanskaya ES, Gavrilov AA, Razin SV. Spatial organization of interphase chromosomes and the role of chromatin fiber dynamics in the positioning of genome elements. Mol Biol. 2014;48:386–94.

    CAS  Google Scholar 

  31. Holmquist G. Transcription rates of individual polytene chromosome bands: effects of gene dose and sex in Drosophila. Chromosoma (Berl). 1972;36:413–52.

    CAS  Google Scholar 

  32. Kiknadze II, Istomina AG, Salova TA. Functional morphology of the polytene chromosomes of the Chironomus pilicornis F. from the water bodies of cryolithozone. Tsitologiya. 2002;44:89–95.

    CAS  Google Scholar 

  33. Kokhanenko AA, Anan’ina TV, Stegnii VN. Intranuclear dynamics of chromosome 6 in nurse cells of Calliphoraerythrocephala Mg. (Diptera: Calliphoridae). Russ J Genet. 2010;46:1045–7.

    CAS  Google Scholar 

  34. Kokhanenko AA, Anan’ina TV, Stegniy VN. The changes in chromosome 6 spatial organization during chromatin polytenization in the Calliphora erythrocephala Mg. (Diptera: Calliphoridae) nurse cells. Protoplasma. 2013;250:141–9.

    CAS  PubMed  Google Scholar 

  35. Kokhanenko AA, Anan’ina TV, Stegniy VN. Localization of rRNA genes in the nuclear space of Calliphoraerythrocephala Mg. nurse cells during polytenization. Protoplasma. 2014;251:93–101.

    PubMed  Google Scholar 

  36. Kubben N, Adriaens M, Meuleman W, Voncken JW, van Steensel B, Misteli T. Mapping of lamin A- and progerin-interacting genome regions. Chromosoma. 2012;121:447–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kulichkov VA, Zhimulev IF. Analysis of spatial organization of the Drosophila melanogaster genome based on the data on ectopic conjugation of polytene chromosomes. Genetika (Mosk). 1976;12:81–9.

    Google Scholar 

  38. Lefevre G. A photographic representation and interpretation of the polytene chromosomes of Drosophila melanogaster salivary glands. In: Ashburner M, Novitski E, editors. The genetics and biology of Drosophila, vol. 1a. New York: Academic Press; 1976. p. 31–66.

    Google Scholar 

  39. Mannuelidis L. Indications of centromere movement during interphase and differentiation. Ann N Y Acad Sci. 1985;450:205–21.

    Google Scholar 

  40. Marshall WF, Sedat JW. Nuclear architecture. Res Probl Cell Differ. 1999;25:283–301.

    CAS  Google Scholar 

  41. Marshall WF, Straight A, Marko JF, Demburg AF, Swedlow JR, Murray A, Belmont A, Agard DA, Sedat JW. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr Biol. 1997;7:930–9.

    CAS  PubMed  Google Scholar 

  42. Meaburn KJ, Misteli T. Cell biology: chromosome territories. Nature. 2007;445:379–781.

    CAS  PubMed  Google Scholar 

  43. Mecheva IS, Semionov EP. Localization of ribosomal DNA insertion elements in polytene chromosomes of Drosophila simulans, Drosophila mauritiana and their interspecific hybrids. Genetica. 1992;85:223–9.

    CAS  PubMed  Google Scholar 

  44. Nemeth A, Langst G. Genome organization in and around the nucleolus. Trends Genet. 2011;27:149–56.

    CAS  PubMed  Google Scholar 

  45. Pontvianne F, Carpentier M-C, Durut N, Pavlistova V, Jaske K, Schorova S, Parrinello H, Rohmer M, Pikaard CS, Fojtova M, Fajkus J, Saez-Vasquez J. Identification of nucleolus-associated chromatin domains reveals a role for the nucleolus in 3D organization of the A. thaliana genome. Cell Rep. 2016;16:1574–87.

    CAS  PubMed  Google Scholar 

  46. Razin SV. Spatial organization of the eukaryotic genome and the operation of epigenetic mechanisms. Genetika (Mosk). 2006;42:1605–14.

    CAS  Google Scholar 

  47. Scaffidi P, Misteli T. Lamin A-dependent nuclear defects in human aging. Science. 2006;312:1059–63.

    CAS  PubMed  Google Scholar 

  48. Schubert V, Berr A, Meister A. Interphase chromatin organization in Arabidopsis nuclei: constraints versus randomness. Chromosoma. 2012;121:369–87.

    CAS  PubMed  Google Scholar 

  49. Schwartz M, Hakim O. 3D view of chromosomes, DNA damage, and translocations. Curr Opin Genet Dev. 2014;25:118–25.

    CAS  PubMed  Google Scholar 

  50. Sharakhov IV, Wasserlauf IE, Stegnii VN. Features of polytene chromosome attachment to the nuclear envelope of ovarian pseudonurse cells in Drosophila melanogaster. Russ J Genet. 1997;33:139–44.

    CAS  Google Scholar 

  51. Shchapova AI. Spatial organization of chromosomes in the eukaryotic cell nucleus of various plant and animal species. Vestn VOGiS. 2010;14:612–21.

    Google Scholar 

  52. Shelkovnikova TA, Wasserlauf IE, Stegniy VN. The changes in nuclear architecture during the ovarian development in the Drosophila subgroup melanogaster. Vestn Tomsk Gos Univ. 2007;301:222–6.

    Google Scholar 

  53. Solovei I, Cremer M. 3D-FISH on cultured cells combined with immunostaining. Methods Mol Biol. 2010;659:117–26.

    CAS  PubMed  Google Scholar 

  54. Stegniy VN. Reorganization of the structure of the interphase nuclei in the ontogeny and phylogeny of malaria mosquitoes. Dokl Ross Akad Nauk. 1979;249:1231–4.

    Google Scholar 

  55. Stegniy VN. Architectonics of the genome, systemic mutations, and evolution. Novosibirsk: Novosibirsk State University; 1993.

    Google Scholar 

  56. Stegniy VN. The evolutionary significance of chromosome architectonics as a form of the epigenetic control of ontogenesis and phylogenesis in eukaryotes. Genetika (Mosk). 2006;42:1215–24.

    Google Scholar 

  57. Stegniy VN, Sharakhova MV. Systemic restructuring of the architectonics of polytene chromosomes in the ontogeny and phylogeny of malaria mosquitoes. Specific structural features of the zones of chromosome contact with the nuclear envelope. Genetika (Mosk). 1991;27:828–35.

    Google Scholar 

  58. Stegniy VN, Wasserlauf IE. Interspecific differences in the co-orientation of primary polytene chromosomes of the Drosophila melanogaster, D. simulans, and D. mauritiana. Genetika (Mosk). 1991;27:1169–73.

    Google Scholar 

  59. Wasserlauf IE. Thedynamics of chromosome orientation in the ovarian nurse cell nuclei in closely related species of the D. melanogaster subgroup and D. virilis group. Vestn Tomsk Gos Univ. 2008;313:205–14.

    Google Scholar 

  60. Xue F, Cooley L. Kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell. 1993;72:681–93.

    CAS  PubMed  Google Scholar 

  61. Zimmer C, Fabre E. Principles of chromosomal organization: lessons from yeast. J Cell Biol. 2011;192:723–33.

    CAS  PubMed  Google Scholar 

  62. Zink D, Cremer T. Chromosome dynamics in nuclei of living cells. Curr Biol. 1998;8:321–4.

    Google Scholar 

  63. Zuleger N, Robson MI, Schirmer EC. The nuclear envelope as a chromatin organizer. Nucleus. 2011;2:339–49.

    PubMed  Google Scholar 

Download references

Acknowledgements

This research work was funded by the Tomsk State University competitiveness improvement programme. We thank Mr. Ian Barrett for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IEW: analysis of the results, drawing up illustrations for the article, writing the article; KEU: setting the experiment, analyzing the results, writing the article; AKS: statistical processing of the results, analysis of the results; VNS: study design, interpretation of results, critical revision and finalization of the manuscript.

Corresponding author

Correspondence to I. E. Wasserlauf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors of this manuscript declare that all experiments comply with the current laws of the country in which they were performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasserlauf, I.E., Usov, K.E., Sibataev, A.K. et al. Dynamics of the spatial orientation of the pericentromeric heterochromatin regions in the polytene chromosomes of ovarian nurse cells in the Drosophila melanogaster (Diptera: Drosophilidae) oogenesis. Nucleus 63, 7–15 (2020). https://doi.org/10.1007/s13237-019-00275-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-019-00275-2

Keywords

Navigation