Skip to main content
Log in

Molecular analysis of genetic diversity and population structure in Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae) in India

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Everniastrum cirrhatum is a medicinally important lichen used in Ayurvedic and Unani systems of medicine. In the present study, DAMD and ISSR methods were used to estimate the genetic variation and population structure of E. cirrhatum collected from different geographical regions of India. Four DAMD and ten ISSR primers detected 42 and 110 polymorphic bands and accounted for 95.65 and 94.24% polymorphisms, respectively. Cumulative band data generated for DAMD and ISSR markers resulted into 94.95% polymorphism across all the accessions of E. cirrhatum. The UPGMA dendrogram showed two major clusters. The clustering pattern in the UPGMA dendrogram revealed that the groupings are largely in congruence with the geographical distribution of the accessions. Clustering patterns in STRUCTURE revealed that geographical diversity is perfectly in congruence with the genetic diversity. The clustering pattern in STRUCTURE was also supported by PCoA. Mantel test for matrix correlation showed a weak but positive correlation between genetic and geographical distance. The hierarchical analysis of molecular variance revealed that maximum percentage of variation was found within a population (57%), followed by among regions (28%) and among populations (15%). The present study provides significant insight into the genetic variability and population structure of E. cirrhatum. Understanding population structure would provide baseline information for developing its sustainable management strategies. It would also be important to conserve populations of E. cirrhatum in different localities of the Himalayan regions to prevent population decline caused by anthropogenic and environmental stochastic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bayraktar H, Dolar FS, Maden S. Use of RAPD and ISSR markers in detection of genetic variation and population structure among Fusarium oxysporum Fr. sp. ciceris isolates on chickpea in Turkey. J Phytopathol. 2008;156:146–54.

    Article  CAS  Google Scholar 

  2. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet. 1980;32:314–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Chandra S, Singh A. A lichen crude drug (Chharila) from India. J Res Educ Indian Med. 1971;6:209–15.

    Google Scholar 

  4. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.

    Article  CAS  PubMed  Google Scholar 

  5. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Frankham R. Quantitative genetics in conservation biology. Genet Res. 1999;74:237–44.

    Article  CAS  PubMed  Google Scholar 

  7. Frankham R. Relationship of genetic variation to population size in wildlife. Conserv Biol. 1996;10:1500–8.

    Article  Google Scholar 

  8. Gargouri S, Bernier L, Hajlaoui MR, Marrakchi M. Genetic variability and population structure of the wheat foot rot fungus, Fusarium culmorum, in Tunisia. Eur J Plant Pathol. 2003;109:807–15.

    Article  CAS  Google Scholar 

  9. Grube M, Hawksworth DL. Trouble with lichen: the evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res. 2007;111:1116–32.

    Article  PubMed  Google Scholar 

  10. Heath DD, Iwama GK, Devlin RH. PCR primed with the VNTR core sequences yields species specific patterns and hypervariable probes. Nucl Acids Res. 1993;21:5782–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Honegger R, Zippler U. Mating system in representatives of Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycol Res. 2007;111:424–32.

    Article  CAS  PubMed  Google Scholar 

  12. Hu J-B, Li J-W, Wang L-J, Liu L-J, Si S-W. Utilization of a set of high-polymorphism DAMD markers for genetic analysis of a cucumber germplasm collection. Acta Physiol Plant. 2011;33:227–31.

    Article  Google Scholar 

  13. Lande R. Genetics and demography in biological conservation. Science. 1988;241:1455–60.

    Article  CAS  PubMed  Google Scholar 

  14. Mishra PK, Tewari JP, Clear RM, Turkington KT. Molecular genetic variation and geographical structuring in Fusarium graminearum. Ann Appl Biol. 2004;145:299–307.

    Article  CAS  Google Scholar 

  15. Murtagh GJ, Dyer PS, Furneaux PA, Crittenden PD. Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycol Res. 2002;106:1277–86.

    Article  CAS  Google Scholar 

  16. Nadkarni KM. Indian materia medica. Mumbai: Popular prakashan; 1996.

    Google Scholar 

  17. Nash TH III, Ryan BD, Gries C, Bungartz F. Lichen flora of the greater Sonoran desert region, vol I. Lichens unlimited. Tempe: Arizona State University; 2002.

    Google Scholar 

  18. Otalora MAG, Belinchon R, Prieto M, Aragon G, Izquierdo P, Martinez I. The threatened lichen Lobaria pulmonaria in the Iberian Peninsula: genetic diversity and structure across a latitudinal gradient. Fungal Biol. 2015;119:802–11.

    Article  PubMed  Google Scholar 

  19. Page RDM. TreeView (Win32), Ver. 1.6.5; 2001. Available from: http://taxonomy.zoology.gla.ac.uk/rod/treeview.html.

  20. Pavlicek A, Hrda S, Flegr J. Free tree—freeware program for construction of phylogenetic trees on the basis of distance data and bootstrapping/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Fol Biol (Praha). 1999;45:97–9.

    CAS  Google Scholar 

  21. Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28:2537–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 1996;2:225–38.

    Article  CAS  Google Scholar 

  23. Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet. 1999;98:107–12.

    Article  CAS  Google Scholar 

  24. Printzen C, Lumbsch HT, Schmitt I, Feige GB. A study on the genetic variability of Biatora helvola using RAPD markers. Lichenologist. 1999;31:491–9.

    Article  Google Scholar 

  25. Printzen C. Fungal specific primers for PCR-amplification of mitochondrial LSU in lichens. Mol Ecol Res. 2002;2:130–2.

    CAS  Google Scholar 

  26. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh N, Bajpai R, Mahar KS, Tiwari V, Upreti DK, Rana TS. ISSR and DAMD markers revealed high genetic variability within Flavoparmelia caperata in Western Himalaya (India). Physiol Mol Biol Plants. 2014;20:501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sipman HJM. Studies on Colombian cryptogams. X. The genus Everniastrum Hale and related taxa (Lichens). Proc K Ned Akad van Wet C. 1980;83:333–54.

    Google Scholar 

  29. Tymon MA, Pell JK. ISSR, ERIC and RAPD techniques to detect genetic diversity in the aphid pathogen Pandora neoaphidis. Mycol Res. 2005;109:285–93.

    Article  CAS  PubMed  Google Scholar 

  30. Velez P, Quintero CA, Merino G, Gasca-Pineda J, González MC. An ISSR-based approach to assess genetic diversity in the marine arenicolous fungus Corollospora maritima sensu lato. Mycoscience. 2016;3:187–95.

    Article  Google Scholar 

  31. Wieczorek A, Achrem M, Mitka JR, Rogalski M, Werczynska K. Genetic variability of the populations of Zwackhia viridis (ach.) poetsch and schied (lecanographaceae, lichenized ascomycetes) in the eastern poland: geographic versus habitat distance. Pol J Ecol. 2014;62:253–61.

    Article  Google Scholar 

  32. Yuzbasioglu E, Halici MG, Karabacak M, Aksoy A. RAPD and ISSR markers indicate high genetic variation within Lobathallia radiosa in Turkey. Mycol Prog. 2011;10:219–28.

    Article  Google Scholar 

  33. Zoller S, Lutzoni F, Scheidegger C. Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol Ecol. 1999;8:2049–59.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the Department of Biotechnology, New Delhi (No. BT/PR1457/39/204/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tikam S. Rana.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Principal coordinate analysis (PCoA) based on the multilocus genotype. The percentage of the total variability explained by the first two components is 52.61% (Coord.1) and 13.32% (Coord.2). Each symbol represents a single population from one of the eight studied populations. Information on each population is provided in Table 1. (PPTX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Verma, R.K., Kumar, N. et al. Molecular analysis of genetic diversity and population structure in Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae) in India. Nucleus 61, 19–27 (2018). https://doi.org/10.1007/s13237-017-0219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-017-0219-2

Keywords

Navigation