Skip to main content
Log in

Heat-resistant luminescent films: a thermal study of fluorene/thiophene copolymer-elastomer blends

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The luminescent properties of conjugated copolymers could be harmed due to thermo-oxidative degradation, limiting their applications. To overcome these problems, incorporating flexible and stable polymers, such as elastomers, is a simple and advantageous approach to obtaining luminescent, flexible, and thermo-resistant films. Thin films based on blends of a luminescent thiophene/fluorene copolymer (PTPF) and two elastomers, nitrile rubber (NBR) and natural rubber (NR) were prepared by a straightforward method, and thermal degradation tests were carried out at different temperatures. Oxidized structures in the PTPF chains can be observed using FTIR, and up to 330 °C for NR and to 395 °C for NBR, no significant changes were observable, however, over these temperatures, the blends also lost their luminescent properties. The characterization of the films at increasing degradation stages points to possible mechanisms associated with the degradation processes suggesting a strategy to guarantee incremented thermal protection to the conjugated material, maintaining its structural and optical properties at higher temperatures than ambient temperature, making these flexible-luminescent films interesting for applications in which the thermal resistance is a key factor to consider.

Graphical abstract

Thermal degradation study and obtention of thermo-resistant luminescent films based on blends of thiophene/fluorene copolymer and nitrile or natural rubber

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Tian, L. Fu, Z. Liu, H. Geng, Y. Sun, G. Lin, X. Zhang, G. Zhang, D. Zhang, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201807176

    Article  PubMed  PubMed Central  Google Scholar 

  2. Z.C. Smith, D.M. Meyer, M.G. Simon, C. Staii, D. Shukla, S.W. Thomas, Macromolecules (2015). https://doi.org/10.1021/ma502289n

    Article  Google Scholar 

  3. M. Mamada, R. Komatsu, C. Adachi, ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.0c05449

    Article  PubMed  Google Scholar 

  4. I. Hamilton, M. Suh, K. Kim, D.Y. Jeon, D.D.C. Bradley, J.S. Kim, Org. Electron. (2020). https://doi.org/10.1016/j.orgel.2019.105496

    Article  Google Scholar 

  5. G. Huseynova, Y.H. Kim, J.H. Lee, J. Lee, J. Inform. Display. (2020). https://doi.org/10.1080/15980316.2019.1707311

    Article  Google Scholar 

  6. N. Pilicode, N.K.M.M. Acharya, P. Naik, S.M.N.A.V. Adhikari, J Photochem Photobiol A Chem. (2019). https://doi.org/10.1016/j.jphotochem.2019.04.012

    Article  Google Scholar 

  7. I.F. Perepichka, D.F. Perepichka, H. Meng, F. Wudl, Adv. Mater. (2005). https://doi.org/10.1002/adma.200500461

    Article  Google Scholar 

  8. R. Ramani, J. Srivastava, S. Alam, Thermochim. Acta (2010). https://doi.org/10.1016/j.tca.2009.10.019

    Article  Google Scholar 

  9. J.K. Jung, Y. Il Moon, K.S. Chung, K.T. Kim, L. McKeen, P. Sarkar, A.K. Bhowmick, S.C. Ng, J.M. Xu, H.S.O. Chan, Synth Methods (2000). https://doi.org/10.1016/S0379-6779(99)00186-1

    Article  Google Scholar 

  10. G.A. Parolin, A.S. Menandro, C.G. Barbosa, L.O. Péres, Synth. Methods (2019). https://doi.org/10.1016/j.synthmet.2019.05.005

    Article  Google Scholar 

  11. Y. Aoyama, T. Yamanari, N. Koumura, H. Tachikawa, M. Nagai, Y. Yoshida, Polym. Degrad. Stab. (2013). https://doi.org/10.1016/j.polymdegradstab.2013.01.006

    Article  Google Scholar 

  12. M. Manceau, A. Rivaton, J.L. Gardette, S. Guillerez, N. Lemaître, Polym. Degrad. Stab. (2009). https://doi.org/10.1016/j.polymdegradstab.2009.03.005

    Article  Google Scholar 

  13. L. Liu, S. Qiu, B. Wang, W. Zhang, P. Lu, Z. Xie, M. Hanif, Y. Ma, J. Shen, J. Phys. Chem. B (2005). https://doi.org/10.1021/jp0547818

    Article  PubMed  Google Scholar 

  14. X. Guo, M. Chen, Z. Zhang, J. Xu, H. Li, ACS Appl. Polym. Mater. (2021). https://doi.org/10.1021/acsapm.1c00317

    Article  Google Scholar 

  15. V. Pakhnyuk, J.W. Onorato, E.J. Steiner, T.A. Cohen, C.K. Luscombe, Polym. Int. 69, 308–316 (2020)

    Article  CAS  Google Scholar 

  16. D. Liu, Z. Ding, Y. Wu, S.F. Liu, Y. Han, K. Zhao, Macromolecules (2022). https://doi.org/10.1021/acs.macromol.1c01537

    Article  PubMed  PubMed Central  Google Scholar 

  17. D. Choi, H. Kim, N. Persson, P. Chu, M. Chang, J. Kang, S. Graham, E. Reichmanis, Chem. Mater. (2016). https://doi.org/10.1021/acs.chemmater.5b04804

    Article  Google Scholar 

  18. Y.-T. Hsieh, J.-Y. Chen, S. Fukuta, P.-C. Lin, T. Higashihara, C.-C. Chueh, W.-C. Chen, ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b04582

    Article  PubMed  Google Scholar 

  19. L. McKeen, Elastomers, in The Effect of Sterilization Methods on Plastics and Elastomers, (4th edition, 2018), p. 305–351 https://doi.org/10.1016/B978-1-4557-2598-4.00013-7.

  20. V. Pakhnyuk, J.W. Onorato, E.J. Steiner, T.A. Cohen, C.K. Luscombe, Polym. Int. (2020). https://doi.org/10.1002/pi.5954

    Article  Google Scholar 

  21. P. Sarkar, A.K. Bhowmick, J. Appl. Polym. Sci. (2018). https://doi.org/10.1002/app.45701

    Article  Google Scholar 

  22. N.O. Braga, D.G.S.M. Cavalcante, A.S. Gomes, E. Yoshihara, R.F. Bianchi, A.E. Job, J. Lumin. (2019). https://doi.org/10.1016/j.jlumin.2019.02.037

    Article  Google Scholar 

  23. J. Hacaloǧlu, S. Yiǧit, U. Akbulut, L. Toppare, Polymer (Guildf). (1997). https://doi.org/10.1016/S0032-3861(97)00056-6

    Article  Google Scholar 

  24. O. Chaikumpollert, K. Sae-heng, O. Wakisaka, A. Mase, Polym. Degrad. Stab. (2011). https://doi.org/10.1016/j.polymdegradstab.2011.08.010

    Article  Google Scholar 

  25. J.K. Jung, Y. Il Moon, K.S. Chung, K.T. Kim, Macromol. Res. (2020). https://doi.org/10.1007/s13233-020-8080-6

    Article  Google Scholar 

  26. J.R. Dunn, Nitrile Rubbers in: Encyclopedia of Materials: Science and Technology (Second edition, 2001), p. 6163.

  27. C.G. Barbosa, R. Faez, L.O. Péres, J. Fluoresc. (2016). https://doi.org/10.1007/s10895-016-1858-4

    Article  PubMed  Google Scholar 

  28. G.E.J. Hicks, S. Li, N.K. Obhi, C.N. Jarrett-Wilkins, D.S. Seferos, Adv. Mater. (2021). https://doi.org/10.1002/adma.202006287

    Article  PubMed  Google Scholar 

  29. S. Inagaki, Y.C. Lin, H. Tanaka, T. Koganezawa, W.C. Chen, T. Higashihara, Mater. Chem. Phys. (2022). https://doi.org/10.1016/j.matchemphys.2022.125911

    Article  Google Scholar 

  30. J. Mei, Z. Bao, Chem. Mater. (2014). https://doi.org/10.1021/cm4020805

    Article  Google Scholar 

  31. Y.C. Lin, M. Matsuda, C.K. Chen, W.C. Yang, C.C. Chueh, T. Higashihara, W.C. Chen, Macromolecules (2021). https://doi.org/10.1021/acs.macromol.1c00534

    Article  Google Scholar 

  32. H.C. Tien, Y.W. Huang, Y.C. Chiu, Y.H. Cheng, C.C. Chueh, W.Y. Lee, J. Mater. Chem. C Mater. (2021). https://doi.org/10.1039/d0tc06059c

    Article  Google Scholar 

  33. A.S. Menandro, G.A. Parolin, C.G. Barbosa, R. Faez, L.O. Péres, Macromol. Symp. (2019). https://doi.org/10.1002/masy.201800023

    Article  Google Scholar 

  34. N. Miyaura, A. Suzuki, Chem. Rev. (1995). https://doi.org/10.1021/cr00039a007

    Article  Google Scholar 

  35. S.L. McFarlane, D.G. Piercey, L.S. Coumont, R.T. Tucker, M.D. Fleischauer, M.J. Brett, J.G.C. Veinot, Macromolecules (2009). https://doi.org/10.1021/ma8022348

    Article  Google Scholar 

  36. C.Y. Yu, W.L. Lin, Eur. Polym. J. (2014). https://doi.org/10.1016/j.eurpolymj.2014.02.002

    Article  Google Scholar 

  37. C.Z. He, Z. Peng, J.P. Zhong, S.Q. Liao, X.D. She, Y.Y. Luo, H.S. Tan, Adv Mat Res. (2011). https://doi.org/10.4028/www.scientific.net/AMR.306-307.50

    Article  Google Scholar 

  38. X. Cao, C. Xu, Y. Wang, Y. Liu, Y. Liu, Y. Chen, Polym. Test. (2013). https://doi.org/10.1016/j.polymertesting.2013.04.005

    Article  Google Scholar 

  39. R. Matroniani, S.H. Wang, Polimeros. (2017). https://doi.org/10.1590/0104-1428.2423

    Article  Google Scholar 

  40. H. Gaspar, L. Fernandes, L. Brandão, G. Bernardo, Polym. Test. (2014). https://doi.org/10.1016/j.polymertesting.2014.01.013

    Article  Google Scholar 

  41. S. Gunasekaran, R.K. Natarajan, A. Kala, Spectrochimica Acta Part A. (2007). https://doi.org/10.1016/j.saa.2006.11.039

    Article  Google Scholar 

  42. R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds, (7th ed., 2005).

  43. M. Celina, J. Wise, D.K.O.K.T. Gillen, R.L. Clough, Polym. Degrad. Stabil. 60, 493–504 (1998). https://doi.org/10.1016/S0141-3910(97)00113-4

    Article  CAS  Google Scholar 

  44. J. Zhao, R. Yang, R. Iervolino, B. Van Der Vorst, S. Barbera, Polym. Degrad. Stabil. J. 115, 32–37 (2015)

    Article  CAS  Google Scholar 

  45. R. Grisorio, G.P. Suranna, P. Mastrorilli, C.F. Nobile, Adv. Funct. Mater. (2007). https://doi.org/10.1002/adfm.200600083

    Article  Google Scholar 

  46. J. Jo, D. Vak, Y.Y. Noh, S.S. Kim, B. Lim, D.Y. Kim, J. Mater. Chem. (2008). https://doi.org/10.1039/b714138f

    Article  Google Scholar 

  47. J. Morgado, A.T. Pereira, A.M. Bragança, Q. Ferreira, S.C.M. Fernandes, C.S.R. Freire, L. Alcácer, A.J.D. Silvestre, C.P. Neto, Express Polym Lett (2013). https://doi.org/10.3144/expresspolymlett.2013.94

    Article  Google Scholar 

  48. R. Sreeja, S. Najidha, S. Jayan, P. Predeep, M. Mazur, P.D. Sharma, Polymer (Guildf) (2006). https://doi.org/10.1016/j.polymer.2005.09.024

    Article  Google Scholar 

  49. Y. Kim, J. Bouffard, S.E. Kooi, T.M. Swager, J. Am. Chem. Soc. 127, 13726–13731 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. S. Tirapattur, M. Bellet, N. Drolet, M. Leclerc, G. Durocher, Chem. Phys. Lett. (2003). https://doi.org/10.1016/S0009-2614(03)00178-7

    Article  Google Scholar 

  51. J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3° edition (Springer Science+Business Media LLC, Baltimore, 2006). https://doi.org/10.1007/978-0-387-46312-4

    Book  Google Scholar 

  52. L. Liu, S. Tang, M. Liu, Z. Xie, W. Zhang, P. Lu, M. Hanif, Y. Ma, J. Phys. Chem. B (2006). https://doi.org/10.1021/jp062612x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to FAPESP (2018/04340-4, 2016/13943-9, 2015/14681-5 and 2014/50869-6), CNPq (401109/2014-3, 308686/2017-9) and CAPES (23038.000776/201754) via the projects of the National Institute for Science and Technology on Organic Electronics (INEO) for the financial support. Rebeca R. Rodrigues receives a CAPES fellowship (Finance code 001).

Author information

Authors and Affiliations

Authors

Contributions

Agnaldo G. N. de Souza: Investigation. Yasmin B. da Silva: Investigation. Rebeca R. Rodrigues: Writing—Original Draft. Alessandra S. Menandro: Methodology, Formal analysis, Writing—Original Draft. Laura O. Péres: Supervision, Funding acquisition, Writing—Review & Editing.

Corresponding author

Correspondence to Rebeca R. Rodrigues.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2023 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, A.G.N., da Silva, Y.B., Rodrigues, R.R. et al. Heat-resistant luminescent films: a thermal study of fluorene/thiophene copolymer-elastomer blends. Macromol. Res. (2024). https://doi.org/10.1007/s13233-024-00261-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13233-024-00261-x

Keywords

Navigation