Skip to main content
Log in

Modification of Graphene Aerogel Embedded Form-Stable Phase Change Materials for High Energy Harvesting Efficiency

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

While porous graphene aerogel can hold plenty of pure phase change material (PCM) in the internal space, its volume shrinkage is a serious problem to decrease the weight of working material. Since the thermal energy storage (TES) capacity of PCM composite, however, depends on the mass ratio of pure PCM during the phase transition process, graphene aerogel filled PCM composite is an appropriate material for high latent heat thermal energy storage (LHTES). In this work, polydimethylsiloxane (PDMS) is embedded into the graphene aerogel by using a spraying method. The PDMS-embedded graphene aerogel exhibits higher mechanical property and flexibility than pristine aerogel. It reduces the volume shrinkage effectively and sustains the initial 3D porous structure to infiltrate pure PCM into the internal space, which can lead to an increase in the efficiency of thermo-electric energy harvesting due to the increase of PCM weight. A PN junction of thermo-electric power generator (PN TEG) is connected to the modified PCM composites, and a temperature difference between two sides of device occurs under the change of external conditions. The modified PCM composites constructed PN TEG generates stable and continuous thermo-electric energy during heating and cooling processes. In addition, finite element method (FEM) is employed to verify the experimental measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Zhang, Q. Liang, D. K. Nandakumar, H. Qu, Q. Shi, F. I. Alzakia, D. J. J. Tay, L. Yang, X. Zhang, and L. Suresh, Nat. Commun., 12, 616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. C. Yu, H. Kim, J. R. Youn, and Y. S. Song, ACS Appl. Energy Mater., (2021).

  3. C. Yu, S. H. Yang, S. Y. Pak, J. R. Youn, and Y. S. Song, Energy Convers. Manage., 169, 88 (2018).

    Article  CAS  Google Scholar 

  4. T. Y. Kim, J. Kwak, and B.-w. Kim, Energy Convers. Manage., 160, 14 (2018).

    Article  CAS  Google Scholar 

  5. C. Yu, J. R. Youn, and Y. S. Song, Macromol. Res., 27, 606 (2019).

    Article  CAS  Google Scholar 

  6. C. R. Saha, M. N. Huda, A. Mumtaz, A. Debnath, S. Thomas, and R. Jinks, Microelectron. J., 96, 104685 (2020).

    Article  Google Scholar 

  7. C. Yu, J. R. Youn, and Y. S. Song, Macromol. Res., 29, 534 (2021).

    Article  CAS  Google Scholar 

  8. Y. Jiang, Z. Wang, M. Shang, Z. Zhang, and S. Zhang, Nanoscale, 7, 10950 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. C. Yu and Y. S. Song, Nanomaterials, 11, 2192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. G. Kogo, B. Xiao, S. Danquah, H. Lee, J. Niyogushima, K. Yarbrough, A. Candadai, A. Marconnet, S. K. Pradhan, and M. Bahoura, Sci. Rep., 10, 1 (2020).

    Article  Google Scholar 

  11. M. E. Kiziroglou, S. W. Wright, T. T. Toh, P. D. Mitcheson, T. Becker, and E. M. Yeatman, IEEE Trans. Ind. Electron., 61, 302 (2013).

    Article  Google Scholar 

  12. G. Karalis, L. Tzounis, K. Tsirka, C. K. Mytafides, A. Voudouris Itskaras, M. Liebscher, E. Lambrou, L. N. Gergidis, N.-M. Barkoula, and A. S. Paipetis, ACS Appl. Mater. Interfaces, (2021).

  13. A. Famengo, A. Ferrario, S. Boldrini, S. Battiston, S. Fiameni, C. Pagura, and M. Fabrizio, Polym. Int., 66, 1725 (2017).

    Article  CAS  Google Scholar 

  14. Y.-S. Byon and J.-W. Jeong, Renew. Sustain. Energy Rev., 128, 109921 (2020).

    Article  Google Scholar 

  15. S.-E. Jo, M.-S. Kim, M.-K. Kim, and Y.-J. Kim, Smart Mater. Struct., 22, 115008 (2013).

    Article  Google Scholar 

  16. Y. Lin, G. Alva, and G. Fang, Energy, 165, 685 (2018).

    Article  CAS  Google Scholar 

  17. K. Pielichowska and K. Pielichowski, Prog. Mater. Sci., 65, 67 (2014).

    Article  CAS  Google Scholar 

  18. S. Kim and L. T. Drzal, Sol. Energy Mater. Sol. Cells, 93, 136 (2009).

    Article  CAS  Google Scholar 

  19. B. Cárdenas and N. León, Renew. Sustain. Energy Rev., 27, 724 (2013).

    Article  Google Scholar 

  20. M. M. Kenisarin, Renew. Sustain. Energy Rev., 14, 955 (2010).

    Article  CAS  Google Scholar 

  21. S. Zhang, D. Feng, L. Shi, L. Wang, Y. Jin, L. Tian, Z. Li, G. Wang, L. Zhao, and Y. Yan, Renew. Sustain. Energy Rev., 135, 110127 (2021).

    Article  CAS  Google Scholar 

  22. A. Sharma, V. V. Tyagi, C. Chen, and D. Buddhi, Renew. Sustain. Energy Rev., 13, 318 (2009).

    Article  CAS  Google Scholar 

  23. R. Baetens, B. P. Jelle, and A. Gustavsen, Energy Buildings, 42, 1361 (2010).

    Article  Google Scholar 

  24. E. Oró, A. De Gracia, A. Castell, M. M. Farid, and L. F. Cabeza, Appl. Energy, 99, 513 (2012).

    Article  Google Scholar 

  25. L. Yang, J. Yang, L.-S. Tang, C.-P. Feng, L. Bai, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, and W. Yang, Energy Fuels, 34, 2471 (2020).

    Article  CAS  Google Scholar 

  26. P. Lv, C. Liu, and Z. Rao, Appl. Energy, 182, 475 (2016).

    Article  CAS  Google Scholar 

  27. C. Alkan and A. Sari, Sol. Energy, 82, 118 (2008).

    Article  CAS  Google Scholar 

  28. Y. Wang, T. D. Xia, H. X. Feng, and H. Zhang, Renewable Energy, 36, 1814 (2011).

    Article  CAS  Google Scholar 

  29. X. Shi, M. R. Yazdani, R. Ajdary, and O. J. Rojas, Carbohydr. Polym., 254, 117279 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. H. Liao, W. Duan, Y. Liu, Q. Wang, and H. Wen, J. Energy Storage, 35, 102248 (2021).

    Article  Google Scholar 

  31. A. Jamekhorshid, S. Sadrameli, and M. Farid, Renew. Sustain. Energy Rev., 31, 531 (2014).

    Article  CAS  Google Scholar 

  32. Y. Konuklu, M. Ostry, H. O. Paksoy, and P. Charvat, Energy Buildings, 106, 134 (2015).

    Article  Google Scholar 

  33. C. Yu, J. R Youn, and Y. S. Song, Fibers Polym., 20, 545 (2019).

    Article  CAS  Google Scholar 

  34. S. I. Hussain and S. Kalaiselvam, J. Therm. Anal. Calorim., 140, 133 (2020).

    Article  CAS  Google Scholar 

  35. C. Yu, J. R. Youn, and Y. S. Song, Fibers Polym., 21, 24 (2020).

    Article  Google Scholar 

  36. Y. Wang, H. Mi, Q. Zheng, Z. Ma, and S. Gong, ACS Appl. Mater. Interfaces, 7, 21602 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. J. Yang, G.-Q. Qi, Y. Liu, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie, and M.-B. Yang, Carbon, 100, 693 (2016).

    Article  CAS  Google Scholar 

  38. J. Zhao, W. Luo, J.-K. Kim, and J. Yang, ACS Appl. Energy Mater., 2, 3657 (2019).

    Article  CAS  Google Scholar 

  39. D. Wei, C. Wu, G. Jiang, X. Sheng, and Y. Xie, Sol. Energy Mater. Sol. Cells, 224, 111013 (2021).

    Article  CAS  Google Scholar 

  40. P. Zhang, X. Xiao, and Z. Ma, Appl. Energy, 165, 472 (2016).

    Article  CAS  Google Scholar 

  41. L. Zuo, Y. Zhang, L. Zhang, Y.-E. Miao, W. Fan, and T. Liu, Materials, 8, 6806 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J.-H. Lee and S.-J. Park, Carbon, 163, 1 (2020).

    Article  CAS  Google Scholar 

  43. S. Kashyap, S. Kabra, and B. Kandasubramanian, J. Mater. Sci., 55, 4127 (2020).

    Article  CAS  Google Scholar 

  44. H. He, J. Klinowski, M. Forster, and A. Lerf, Chem. Phys. Lett., 287, 53 (1998).

    Article  CAS  Google Scholar 

  45. J. Guerrero-Contreras and F. Caballero-Briones, Mater. Chem. Phys., 153, 209 (2015).

    Article  CAS  Google Scholar 

  46. C. Yu, J. R Youn, and Y. S. Song, J. Polym. Res., 28, 1 (2021).

    Article  Google Scholar 

  47. E. Elif Hamurcu and B. M. Baysal, J. Polym. Sci., Part B: Polym. Phys., 32, 591 (1994).

    Article  Google Scholar 

  48. C. Yu, J. R. Youn, and Y. S. Song, Polym. Adv. Technol., Pat.5419 (2021).

  49. R. Kiflemariam, M. Almas, and C. Lin, in Proc. 2014 COMSOL Conf, 2014, pp 1–5.

Download references

Acknowledgment

The present research was supported by the research fund of Dankook University in 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Seok Song.

Additional information

Authors’ contributions

Chengbin Yu performed the experiments, numerical simulation, conceptualized the main idea, and wrote an original draft. Young Seok Song reviewed and finished the final version of the article for publication.

Supporting information

Information is available regarding the experimental and numerical results of the modified graphene aerogel embedded form-stable PCM composites for thermoelectric energy harvesting. The materials are available via the Internet at www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Song, Y.S. Modification of Graphene Aerogel Embedded Form-Stable Phase Change Materials for High Energy Harvesting Efficiency. Macromol. Res. 30, 198–204 (2022). https://doi.org/10.1007/s13233-022-0019-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0019-7

Keywords

Navigation