Skip to main content
Log in

Soluble Polyimides Derived from a Novel Aromatic Diamine Containing an Imidazole Unit and Trifluoromethyl Groups

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A series of polyimide (PI) films were prepared through a two-step polycondensation process via chemical imidization using five commercial aromatic dianhydrides and a novel diamine containing an imidazole unit and trifluoromethyl groups, i.e., 4,4′-(((4,5-diphenyl-1H-imidazole-1,2-diyl)bis(4,1-phenylene))bis(oxy)) bis(3-(trifluoromethyl)aniline) (referred to as diamine 3). The number average molecular weights of the resulting PIs ranged from 1.57 × 104 to 3.17 × 104 g·mol−1 with polydispersity indices between 2.53 and 3.60, which were obtained through gel permeation chromatography measurements using a polystyrene standard. All the PIs prepared using diamine 3 were amorphous because of the large side group and kink structure of the diamine. They are soluble in common high-boiling point solvents, such as N-methyl pyrrolidone, dimethyl acetamide, and m-cresol, as well as several low-boiling point solvents, including chloroform and tetrahydrofuran. They exhibit the thermal stability with 10% weight loss temperatures in the range of 545 to 562 °C and 5% weight loss temperatures in the range of 500 to 541 °C in a nitrogen atmosphere. Their glass transition temperatures exceed 245 °C. All the resulting PI films show transmittances of over 74% in the visible light region ranging from 400 to 760 nm. The tensile strength of the PI films is in the range of 30.1 to 52.8 MPa, while the tensile modulus ranges from 1.0 to 1.7 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bong, H. Yeo, B. C. Ku, M. Goh, and N. H. You, Macromol. Res., 26, 85 (2018).

    Article  CAS  Google Scholar 

  2. W. M. Edwards and R. I. Robison, US Patent, 2710853 (1955).

  3. D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, and C. S. Ha, Prog. Polym. Sci., 37, 907 (2012).

    Article  CAS  Google Scholar 

  4. X. H. Huang, W. Huang, J. Liu, L. Meng, and D. Y. Yan, Polym. Int., 61, 1503 (2012).

    Article  CAS  Google Scholar 

  5. Y. C. Xiao, B. T. Low, S. S. Hosseini, T. S. Chung, and D. R. Paul, Prog. Polym. Sci., 34, 561 (2009).

    Article  CAS  Google Scholar 

  6. S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, Prog. Polym. Sci., 29, 45 (2004).

    Article  CAS  Google Scholar 

  7. P. K. Tapaswi and C. S. Ha, Macromol. Chem. Phys., 220, 1800313 (2019).

    Article  Google Scholar 

  8. H. S. Jin, J. H. Chang, and J. C. Kim, Macromol. Res., 16, 503 (2008).

    Article  CAS  Google Scholar 

  9. W. Huang, D. Y. Yan, and Q. H. Lu, Macromol. Rapid Commun., 22, 1481 (2001).

    Article  CAS  Google Scholar 

  10. J. Weber, J. Schmidt, A. Thomas, and W. Bohlmann, Langmuir, 26, 15650 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. K. V. Rao, R. Haldar, C. Kulkarni, T. K. Maji, and S. J. George, Chem. Mater., 24, 969 (2012).

    Article  CAS  Google Scholar 

  12. A. S. Mathews, I. Kim, and C. S. Ha, Macromol. Res., 15, 114 (2007).

    Article  CAS  Google Scholar 

  13. H. J. Ni, J. G. Liu, Z. H. Wang, and S. Y. Yang, J. Ind. Eng. Chem., 28, 16 (2015).

    Article  CAS  Google Scholar 

  14. M. Hasegawa and K. Horie, Prog. Polym. Sci., 26, 259 (2001).

    Article  CAS  Google Scholar 

  15. Y. Zhuang, J. G. Seong, and Y. M. Lee, Prog. Polym. Sci., 92, 35 (2019).

    Article  CAS  Google Scholar 

  16. C. Y. Li, L. Yi, S. Xu, X. M. Wu, W. Huang, and D. Y. Yan, J. Polym. Res., 24, 7 (2017).

    Article  Google Scholar 

  17. L. Yi, W. Huang, and D. Y. Yan, J. Polym. Sci., Part A Polym. Chem., 55, 533 (2017).

    Article  CAS  Google Scholar 

  18. X. M. Wu, C. Shu, X. Q. He, S. Wang, X. Fan, Z. Yu, D. Y. Yan, and W. Huang, Macromol. Chem. Phys., 221, 1900506 (2020).

    Article  CAS  Google Scholar 

  19. K. M. Jeong, P. K. Tapaswi, T. Kambara, R. Ishige, S. Ando, and C. S. Ha, High Perform. Polym., 32, 620 (2020).

    Article  CAS  Google Scholar 

  20. C. Y. Wang, G. Li, X. Y. Zhao, and J. M. Jiang, J. Polym. Sci., Part A: Polym. Chem., 47, 3309 (2009).

    Article  CAS  Google Scholar 

  21. K. Zeng, Q. Guo, S. Gao, D. Wu, H. Fan, and G. Yang, Macromol. Res., 20, 10 (2012).

    Article  CAS  Google Scholar 

  22. G. S. Liou, Y. L. Yang, and Y. O. Su, J. Polym. Sci., Part A: Polym. Chem., 44, 2587 (2006).

    Article  CAS  Google Scholar 

  23. C. Liu, M. Mei, L. Zang, H. Zhou, X. Huang, and C. Wei, Macromol. Res., 27, 232 (2019).

    Article  CAS  Google Scholar 

  24. R. Revathi, P. Prabunathan, S. Devaraju, and M. Alagar, High Perform. Polym., 27, 247 (2015).

    Article  CAS  Google Scholar 

  25. S. J. Zhang, Q. Q. Bu, Y. F. Li, C. L. Gong, X. Y. Xu, and H. Li, Mater. Chem. Phys., 128, 392 (2011).

    Article  CAS  Google Scholar 

  26. Y. H. Kim, H. S. Kim, and S. K. Kwon, Macromolecules, 38, 7950 (2005).

    Article  CAS  Google Scholar 

  27. C. Wang, W. Chen, Y. Chen, X. Zhao, J. Li, and Q. Ren, Mater. Chem. Phys., 144, 553 (2014).

    Article  CAS  Google Scholar 

  28. S. D. Kim, S. Y. Kim, and I. S. Chung, J. Polym. Sci., Part A: Polym. Chem., 51, 4413 (2013).

    Article  CAS  Google Scholar 

  29. M. Ghaemy and R. Alizadeh, Eur. Polym. J., 45, 1681 (2009).

    Article  CAS  Google Scholar 

  30. L. Yi, W. Huang, and D. Y. Yan, J. Polym. Sci., Part A: Polym. Chem., 54, 976 (2016).

    Article  CAS  Google Scholar 

  31. A. Ghosh, S. K. Sen, S. Banerjee, and B. Voit, RSC Adv., 2, 5900 (2012).

    Article  CAS  Google Scholar 

  32. M. Ghaemy and F. R. Berenjestanaki, J. Fluorine Chem., 144, 86 (2012).

    Article  CAS  Google Scholar 

  33. S. M. Amininasab, S. Esmaili, M. Taghavi, and Z. Shami, J. Fluorine Chem., 192, 48 (2016).

    Article  CAS  Google Scholar 

  34. S. M. A. Nasab and M. Ghaemy, J. Polym. Res., 18, 1575 (2011).

    Article  CAS  Google Scholar 

  35. W. Jang, H. S. Lee, S. Lee, S. Choi, D. Shin, and H. Han, Mater. Chem. Phys., 104, 342 (2007).

    Article  CAS  Google Scholar 

  36. M. Ghaemy and R. Alizadeh, Eur. Polym. J., 45, 1681 (2009).

    Article  CAS  Google Scholar 

  37. D. Yin, Y. Li, H. Yang, S. Yang, L. Fan, and J. Liu, Polymer, 46, 3119 (2005).

    Article  CAS  Google Scholar 

  38. K. M. Jeong, Y. Li, D. G. Yoo, N. K. Lee, H. G. Lee, S. Ando, and C. S. Ha, Polym, Int., 67, 588 (2018).

    Article  CAS  Google Scholar 

  39. L. Yi, C. Y. Li, W. Huang, and D. Y. Yan, Polymer, 80, 67 (2015).

    Article  CAS  Google Scholar 

  40. M. Hasegawa, M. Fujii, J. Ishii, S. Yamaguchi, E. Takezawa, and T. Kagayama, Polymer, 55, 4693 (2014).

    Article  CAS  Google Scholar 

  41. M. Hasegawa, K. Kasamatsu, and K. Koseki, Eur. Polym. J., 48, 483 (2012).

    Article  CAS  Google Scholar 

  42. P. K. Tapaswi, M. C. Choi, S. Nagappan, and C. S. Ha, J. Polym. Sci., Part A: Polym. Chem., 53, 479 (2015).

    Article  CAS  Google Scholar 

  43. M. Zhang, W. Liu, X. Gao, P. Cui, T. Zou, G. Hu, L. Tao, and L. Zhai, Polymers, 12, 1532 (2020).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Sik Ha or Wei Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: The work was financially supported by the Korea Institute for Advancement of Technology funded by the Ministry of Trade, Industry and Energy (P0017531) and the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT, Korea (NRF-2017R1A2B3012961 and Brain Korea 21 Plus Program (4199990414196)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Tapaswi, P.K., Ha, CS. et al. Soluble Polyimides Derived from a Novel Aromatic Diamine Containing an Imidazole Unit and Trifluoromethyl Groups. Macromol. Res. 29, 365–375 (2021). https://doi.org/10.1007/s13233-021-9045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9045-0

Keywords

Navigation