Skip to main content
Log in

Click Chemistry-Induced Terminally Crosslinked Poly(ether sulfone) as a Highly Conductive Anion Exchange Membrane Under Humidity Condition

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

New terminally crosslinked anion exchange membranes (AEMs) were developed by both thermal and click reaction of piperidinium-functionalized poly(ether sulfone) (PES) multiblock copolymer with both bis(aryl azide) and PEG-functionalized-azide (PEG-azide) as crosslinkers. The structure as well as physicochemical and electrical properties of the corresponding terminally-crosslinked membranes were analyzed and compared with their non-crosslinked counterparts. The hydroxide conductivity of our terminally-crosslinked membranes (especially the PEG-PI-xPES membrane) under room humidity and high-temperature conditions was found to be high because of their unique structures generated by terminal-crosslinking, and hence high water-holding capacity of these crosslinked systems. The amount of bound water was analyzed using both TGA and DSC technqiues to support the enhanced water-holding capacity for our terminally-crosslinked membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, and Y. S. Kim, J. Power Sources, 375, 170 (2018).

    Article  CAS  Google Scholar 

  2. Z. F. Pan, L. An, T. S. Zhao, and Z. K. Tang, Prog. Energy Combust. Sci., 66, 141 (2018).

    Article  Google Scholar 

  3. D. R. Dekel, J. Power Sources, 375, 158 (2018).

    Article  CAS  Google Scholar 

  4. J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, and L. Zhuang, Energy Environ. Sci., 7, 3135 (2014).

    Article  CAS  Google Scholar 

  5. C. Chen, Y. S. Tse, G. E. Lindberg, C. Knight, and G. A. Voth, J. Am. Chem. Soc., 138, 991 (2016).

    Article  CAS  Google Scholar 

  6. G. Merle, M. Wessling, and K. Nijmeijer, J. Membr. Sci., 377, 1 (2011).

    Article  CAS  Google Scholar 

  7. Y. Ye, S. Sharick, E. M. Davis, K. I. Winey, and Y. A. Elabd, ACS Macro Lett., 2, 575 (2013).

    Article  CAS  Google Scholar 

  8. Y. A. Elabd and M. A. Hickner, Macromolecules, 44, 1 (2011).

    Article  CAS  Google Scholar 

  9. Roy, X. Yu, S. Dunn, and J. E. McGrath, J. Membr. Sci., 327, 118 (2009).

    Article  CAS  Google Scholar 

  10. Wang, B. Mo, Z. He, X. Xie, C. X. Zhao, L. Zhang, Q. Shao, X. Guo, E. K. Wujcik, and Z. Guo, Polymer, 138, 363 (2018).

    Article  CAS  Google Scholar 

  11. S. Pivovar, Polymer, 47, 4194 (2006).

    Article  CAS  Google Scholar 

  12. L. E. Karlsson and P. Jannasch, J. Membr. Sci., 230, 61 (2004).

    Article  CAS  Google Scholar 

  13. N. Mondal, Y. He, L. Ge, L. Wu, K. Emmanuel, M. M. Hossain, and T. Xu, RSC Adv., 7, 29794 (2017).

    Article  CAS  Google Scholar 

  14. W. H. Lee, E. J. Park, J. Han, D. W. Shin, Y. S. Kim, and C. Bae, ACS Macro Lett., 6, 566 (2017).

    Article  CAS  Google Scholar 

  15. S. Kwon, A. H. N. Rao, and T.-H. Kim, J. Power Sources, 375, 421 (2018).

    Article  CAS  Google Scholar 

  16. K. H. Lee, D. H. Cho, Y. M. Kim, S. J. Moon, J. G. Seong, D. W. Shin, J.-Y. Sohn, J. F. Kim, and Y. M. Lee, Energy Environ. Sci., 10, 275 (2017).

    Article  CAS  Google Scholar 

  17. H. Lim, B. Lee, D. Yun, A. Z. A. Munsur, J. E. Chae, S. Y. Lee, H. J. Kim, S. Y. Nam, C. H. Park, and T.-H. Kim, ACS Appl. Mater. Interfaces, 10, 41279 (2018).

    Article  CAS  Google Scholar 

  18. H.-S. Dang and P. Jannasch, J. Mater. Chem. A, 5, 21965 (2017).

    Article  CAS  Google Scholar 

  19. H.-S. Dang and P. Jannasch, J. Mater. Chem. A, 4, 11924 (2016).

    Article  CAS  Google Scholar 

  20. N. Chen, C. Lu, Y. Li, C. Long, and H. Zhu, J. Membr. Sci., 572, 246 (2019).

    Article  CAS  Google Scholar 

  21. X. Chu, L. Liu, Y. Huang, M. D. Guiver, and N. Li, J. Membr. Sci., 578, 239 (2019).

    Article  CAS  Google Scholar 

  22. H.-S. Dang and P. Jannasch, ACS Appl. Energy Mater., 1, 2222 (2018).

    Article  CAS  Google Scholar 

  23. Y. Jiang, J. Liao, S. Yang, J. Li, Y. Xu, H. Ruan, A. Sotto, B. V. D. Burggen, and J. Shen, React. Funct. Polym., 130, 61 (2018).

    Article  CAS  Google Scholar 

  24. N. Li, M. D. Guiver, and W. H. Binder, ChemSusChem, 6, 1376 (2013).

    Article  CAS  Google Scholar 

  25. Q. Ge, J. Ran, J. Miao, Z. Yang, and T. Xu, ACS Appl. Master. Interfaces, 7, 28545 (2015).

    Article  CAS  Google Scholar 

  26. W. Liu, L. Liu, J. Liao, L. Wang, and N. Li, J. Membr. Sci., 536, 133 (2017).

    Article  CAS  Google Scholar 

  27. A. D. Mohanty, C. Y. Ryu, Y. S. Kim, and C. Bae, Macromolecules, 48, 7085 (2015).

    Article  CAS  Google Scholar 

  28. C. Fujimoto, D.-S. Kim, M. Hibbs, D. Wrobleski, and Y. S. Kim, J. Membr. Sci., 423–424, 438 (2012).

    Article  Google Scholar 

  29. M. R. Hibbs, J. Polym. Sci. B: Polym. Phys., 51, 1736 (2013).

    Article  CAS  Google Scholar 

  30. Y. Zhu, L. Ding, X. Liang, M. A. Shehzad, L. Wang, X. Ge, Y. He, L. Wu, J. R. Varcoe, and T. Xu, Energy Environ. Sci., 11, 3472 (2018).

    Article  CAS  Google Scholar 

  31. D. Chen and M. A. Hickner, Macromolecules, 46, 9270 (2013).

    Article  CAS  Google Scholar 

  32. P. Talik and U. Hubicka, J. Therm. Anal. Calorim., 132, 445 (2018).

    Article  CAS  Google Scholar 

  33. Z. Lu, G. Polizos, D. D. Macdonald, and E. Manias, J. Electrochem. Soc., 155, B171 (2008).

    Google Scholar 

  34. N. Mondal, Y. He, L. Ge, L. Wu, K. Emmanuel, M. M. Hossain, and T. Xu, RSC Adv., 7, 29794 (2017).

    Article  CAS  Google Scholar 

  35. T. Hatakeyama and H. Hatakeyama, Thermochim. Acta, 308, 3 (1998).

    Article  CAS  Google Scholar 

  36. D. S. Kim, G. P. Robertson, M. D. Guiver, and Y. M. Lee, J. Membr. Sci., 281, 111 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Hyun Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: Financial support was received from the Incheon National University Institute of Convergence Science & Technology in 2018.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, D., Yim, T., Kwon, O.J. et al. Click Chemistry-Induced Terminally Crosslinked Poly(ether sulfone) as a Highly Conductive Anion Exchange Membrane Under Humidity Condition. Macromol. Res. 27, 1050–1059 (2019). https://doi.org/10.1007/s13233-020-8037-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8037-9

Keywords

Navigation