Skip to main content
Log in

Carbon-Fiber-Reinforced Epoxy Resin with Sustainable Additives from Silk and Rice Husks for Improved Mode-I and Mode-II Interlaminar Fracture Toughness

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This paper presents an effective method for enhancing both the mode I (GIC) and mode II (GIIC) interlaminar fracture toughness of carbon fiber reinforced epoxy resin (CFRE). For precursor materials, silk fibroin nanofibers (nSF) and rice husk silica were prepared from sustainable resources. Nanocomposite samples were prepared using various loading ratios of the silica and nSF in epoxy resin (EP). Mechanical stirring and sonication techniques were used to prepare homogenous mixtures of silica and nSF in epoxy resin. Non-isothermal differential scanning calorimetry and the Kissinger equation were used to examine and calculate the cure kinetics and activation energy (Ea) of EP and the composite samples. The CFRE sample with hybrid fillers of nSF and silica at the ratio 0.2/20 (wt%/wt%) exhibited the highest GIC, and improved upon the mode-I and mode-II toughness of the pure-resin sample by 36.08% and 30.06%, respectively. Study of the fracture surfaces indicated that adding nSF and silica as fillers increases the energy required to fracture the CFRE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Meng, Y. Zeng, G. Zhu, J. Zhang, P. Chen, Y. Cheng, Z. Fang, and K. Guo, Polym. Chem. (2019).

  2. S. Liu, Z. Fang, H. Yan, and H. Wang, RSC Adv., 6, 5288 (2016).

    CAS  Google Scholar 

  3. C. M. Vu, D. D. Nguyen, L. H. Sinh, T. D. Pham, L. T. Pham, and H. J. Choi, Polym. Test., 61, 150 (2017).

    CAS  Google Scholar 

  4. C. M. Vu, L. H. Sinh, D. D. Nguyen, H. V. Thi, and H. J. Choi, Polym. Test., 71, 200 (2018).

    Google Scholar 

  5. A. M. Atta, A. M. El-Saeed, G. M. El-Mahdy, and H. A. Al-Lohedan, RSC Adv., 5, 101923 (2015).

    CAS  Google Scholar 

  6. S. Wang, S. Ma, Q. Li, X. Xu, B. Wang, W. Yuan, S. Zhou, S. You, and J. Zhu, Green Chem., 21, 1484 (2019).

    CAS  Google Scholar 

  7. H. Gu, C. Ma, J. Gu, J. Guo, X. Yan, J. Huang, Q. Zhang, and Z. Guo, J. Mater. Chem. C, 4, 5890 (2016).

    CAS  Google Scholar 

  8. P. Slobodian, S.L. Pertegás, P. Riha, J. Matyas, R. Olejnik, R. Schledjewski, and M. Kovar, Compos. Sci. Technol., 156, 61 (2018).

    CAS  Google Scholar 

  9. C. Xiao, Y. Tan, X. Wang, L. Gao, L. Wang, and Z. Qi, Chem. Phys. Lett., 703, 8 (2018).

    CAS  Google Scholar 

  10. T. Li, M. Li, Y. Gu, S. Wang, Q. Li, and Z. Zhang, Compos. Sci. Technol., 166, 176 (2018).

    CAS  Google Scholar 

  11. N. C. Das, T. K. Chaki, D. Khastgir, and A. Chakraborty, Adv. Polym. Technol., 20, 226 (2001).

    CAS  Google Scholar 

  12. P. Bhawal, T. K. Das, S. Ganguly, S. Mondal, R. Ravindren, and N. C. Das, J. Polym. Sci. Appl., 1, 2 (2017).

    Google Scholar 

  13. W. Zhang, X. Deng, G. Sui, and X. Yang, Carbon, 145, 629 (2019).

    CAS  Google Scholar 

  14. Z. Zhang, C. Wang, G. Huang, H. Liu, S. Yang, and A. Zhang, J. Hazard. Mater., 357, 73 (2018).

    CAS  PubMed  Google Scholar 

  15. N. Zheng, J. He, J. Gao, Y. Huang, F. Besenbacher, and M. Dong, Mater. Design, 145, 218 (2018).

    CAS  Google Scholar 

  16. T. D. Pham, C. M. Vu, and H. J. Choi, Polym. Sci. Ser. A, 59, 437 (2017).

    CAS  Google Scholar 

  17. C. M. Vu, T. V. Nguyen, L. T. Nguyen, and H. J. Choi, Polym. Bull., 73, 1373 (2016).

    CAS  Google Scholar 

  18. C. M. Vu, L. T. Nguyen, T. V. Nguyen, and H. J. Choi, Polym. Korea, 38, 726 (2014).

    CAS  Google Scholar 

  19. A. Ashori, S. Menbari, and R. Bahrami, J. Ind. Eng. Chem., 38, 37 (2016).

    CAS  Google Scholar 

  20. W. Li, D. Xiang, L. Wang, E. H. Jones, C. Zhao, B. Wang, and Y. Li, RSC Adv., 8, 26910 (2018).

    CAS  Google Scholar 

  21. N. Zheng, Y. Huang, H. Y. Liu, J. Gao, and Y. W. Mai, Compos. Sci. Technol., 140, 8 (2017).

    CAS  Google Scholar 

  22. N. T. Kamar, L. T. Drzal, A. Lee, and P. Askeland, Polymer, 111, 36 (2017).

    CAS  Google Scholar 

  23. M. D. R. Batista and L. T. Drzal, Compos. Sci. Technol., 164, 274 (2018).

    Google Scholar 

  24. A. Klingler, A. Bajpai, and B. Wetzel, Eng. Fract. Mech., 203, 81 (2018).

    Google Scholar 

  25. H. Shin, B. Kim, J. G. Han, M. Y. Lee, J. K. Park, and M. Cho, Compos. Sci. Technol., 145, 173 (2017).

    CAS  Google Scholar 

  26. X. Zhao, Y. Li, W. Chen, S. Li, Y. Zhao, and S. Du, Compos. Sci. Technol., 171, 180 (2019).

    CAS  Google Scholar 

  27. L. Wang, Y. Tan, H. Wang, L. Gao, and C. Xiao, Chem. Phys. Lett., 699, 14 (2018).

    CAS  Google Scholar 

  28. N. T. Kamar and L. T. Drzal, Polymer, 92, 114 (2016).

    CAS  Google Scholar 

  29. Y. Zhao, Z. K. Chen, Y. Liu, H. M. Xiao, Q. P. Feng, and S. Y. Fu, Compos. A Appl. Sci. Manufact., 55, 178 (2013).

    CAS  Google Scholar 

  30. D. Quan, J. L. Urdániz, and A. Ivanković, Mater. Design, 143, 81 (2018).

    CAS  Google Scholar 

  31. J. Cha, G. H. Jun, J. K. Park, J. C. Kim, H. J. Ryu, and S. H. Hong, Compos. B Eng., 129, 169 (2017).

    CAS  Google Scholar 

  32. N. C. Adak, S. Chhetri, T. Kuila, N. C. Murmu, P. Samanta, and J. H. Lee, Compos. B Eng., 149, 22 (2018).

    CAS  Google Scholar 

  33. W. H. Park, L. Jeong, D. I. Yoo, and S. Hudson, Polymer, 45, 7151 (2004).

    CAS  Google Scholar 

  34. S. A. Cervantes, A. Pagán, J. G. Martínez, A. B. Esclapez, T. F. Otero, L. M. Olmo, J. I. Paredes, and J. L. Cenis, Mater. Sci. Eng. C., 79, 315 (2017).

    Google Scholar 

  35. C. M. Vu and H. J. Choi, J. Polym. Plast. Tech. Eng., 55, 1048 (2016).

    Google Scholar 

  36. T. K. Das, S. Ganguly, P. Bhawal, S. Remanan, S. Ghosh, and N. C. Das, J. Environ. Chem. Eng., 6, 6989 (2018).

    CAS  Google Scholar 

  37. W. Han, S. Chen, J. Campbell, X. Zhang, and Y. Tang, Mater. Chem. Phys., 177, 147 (2016).

    CAS  Google Scholar 

  38. H. Y. Liu, G. T. Wang, Y. W. Mai, and Y. Zeng, Compos. B Eng., 42, 2170 (2011).

    Google Scholar 

  39. J. L. Tsai, B. H. Huang, and Y. L. Cheng, Proce. Eng., 14, 1982 (2011).

    CAS  Google Scholar 

  40. S. H. Kwon, I. H. Park, C. M. Vu, and H. J Choi, J. Taiwan. Inst. Chem. Eng., 95, 432 (2018).

    Google Scholar 

  41. T. D. Pham, C. M. Vu, and H. J. Choi, Polym. Sci. Ser. A, 59, 437 (2017).

    CAS  Google Scholar 

  42. H. E. Kissinger, Anal. Chem., 29, 1702 (1957).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang-Vu Bach.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.02-2017.15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, C.M., Bach, QV., Vu, H.T. et al. Carbon-Fiber-Reinforced Epoxy Resin with Sustainable Additives from Silk and Rice Husks for Improved Mode-I and Mode-II Interlaminar Fracture Toughness. Macromol. Res. 28, 33–41 (2020). https://doi.org/10.1007/s13233-020-8010-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8010-7

Keywords

Navigation