Skip to main content
Log in

Dual-fluorophore silica microspheres for ratiometric acidic pH sensing

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Encapsulation of fluorophores in silica matrix offers many advantages such inhibition of photobleaching and possibilities for ratiometric pH sensing. Dualfluorophore pH-responsive silica microspheres, incorporating pyranine (HPTS) and rhodamine B isothiocyanate (RBITC), were synthesized by Stöber method, followed layer-by-layer depositions. The resulting dual-fluorophore silica microspheres were then characterized by SEM, TEM, fluorescence spectroscopy and imaging. The incorporation of two dyes in the microspheres allowed ratiometric quantification of pH. The ratiometric approach has been proven to reduce the influences of external perturbations and unequal dye concentration in silica matrix during measurements. The dynamic range for pH was from 1.5 to 4. The sensing microspheres could be applied to determine acidic pH. Additionally, the sensing microspheres exhibited a high colloidal and long-term stability and also allow a fast detection of pH due the porosity of the microspheres. Such structured microspheres could be optimized, using multiple dyes for multianalyte detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Han and K. Burgess, Chem. Rev., 24, 297 (2010).

    Google Scholar 

  2. G. Hidalgo, A. Burns, E. Herz, A. G. Hay, P. L. Houston, and U. Wiesner, Appl. Environ. Microbiol., 75, 7426 (2009).

    Article  CAS  Google Scholar 

  3. Z. Gryczynski, I. Gryczynski, and J. R. Lakowicz, J. Biophotonics, 360, 44 (2003).

    CAS  Google Scholar 

  4. A. Burns, P. Sengupta, T. Zedayko, B. Baird, and U. Wiesner, Small, 2, 723 (2006).

    Article  CAS  Google Scholar 

  5. Z. Zhujun and W. R. Seitz, Anal. Chim. Acta, 160, 47 (1984).

    Article  Google Scholar 

  6. Z.-Z. Li, C.-G. Niu, G.-M. Zeng, Y.-G. Liu, P.-F. Gao, and G.-H. Huang, Sens. Actuators, B, 114, 308 (2006).

    Article  CAS  Google Scholar 

  7. S.-L. Shen, X.-F. Zhang, S.-Y. Bai, J.-Y. Miao, and B.-X. Zhao, RSC Adv., 5, 13341 (2015).

    Article  CAS  Google Scholar 

  8. H. Offenbacher, O. S. Wolfbeis, and E. Fürlinger, Sens. Actuators, 9, 73 (1986).

    Article  CAS  Google Scholar 

  9. R. N. Dansby-Sparks, J. Jin, S. J. Mechery, U. Sampathkumaran, T. W. Owen, B. D. Yu, K. Goswami, K. Hong, J. Grant, and Z.-L Xue, Anal. Chem., 82, 593 (2009).

    Article  Google Scholar 

  10. A. J. Amali, N. H. Awwad, R. K. Rana, and D. Patra, Anal. Chim. Acta, 708, 75, (2011).

    Article  CAS  Google Scholar 

  11. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science+Business Media, New York, 2006.

    Book  Google Scholar 

  12. H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, and U. Wiesner, Nano Lett., 5, 113 (2005).

    Article  CAS  Google Scholar 

  13. I. Y. Kim, E. Joachim, H. Choi, and K. Kim, Nanomedicine, 11, 1407 (2015).

    Article  CAS  Google Scholar 

  14. A. Mills, Q. Chang, and N. McMurray, Anal. Chem., 64, 1383 (1992).

    Article  CAS  Google Scholar 

  15. F. J. Arriagada and K. Osseo-Asare, J. Colloid Interface Sci., 211, 210, (1999).

    Article  CAS  Google Scholar 

  16. F. Gao, X. Chen, Q. Ye, Z. Yao, X. Guo, and L. Wang, Microchim. Acta, 172, 327 (2011).

    Article  CAS  Google Scholar 

  17. H. Giesche, J. Eur. Ceram. Soc., 14, 205 (1994).

    Article  CAS  Google Scholar 

  18. J. Liang, Z. Lu, J. Xu, J. Li, H. Zhang, and W. Yang, J. Mater. Chem., 21, 1147 (2011).

    Article  CAS  Google Scholar 

  19. E. Herz, H. Ow, D. Bonner, A. Burns, and U. Wiesner, J. Mater. Chem., 19, 6341 (2009).

    Article  CAS  Google Scholar 

  20. R. N. Smith, L. Reven, and C. J. Barrett, Macromolecules, 36, 1876 (2003).

    Article  CAS  Google Scholar 

  21. J.-F. Liu, G. Min, and W. A. Ducker, Langmuir, 17, 4895 (2001).

    Article  CAS  Google Scholar 

  22. F. Caruso and H. Möhwald, Langmuir, 15, 8276 (1999).

    Article  CAS  Google Scholar 

  23. D. J. Tobler, S. Shaw, and L. G. Benning, Geochim. Cosmochim. Acta, 73, 5377 (2009).

    Article  CAS  Google Scholar 

  24. Z. H. Bai, R. Chen, P. Si, Y. J. Huang, H. D. Sun, and D. H. Kim, ACS Appl. Mater. Interfaces, 5, 5856 (2013).

    Article  CAS  Google Scholar 

  25. S. H. Lee, J. Kumar, and S. K. Tripathy, Langmuir, 16, 10482 (2000).

    Article  CAS  Google Scholar 

  26. Z. Sharrett, S. Gamsey, L. Hirayama, B. Vilozny, J. T. Suri, R. A. Wessling, and B. Singaram, Org. Biomol. Chem., 7, 1461 (2009).

    Article  CAS  Google Scholar 

  27. R. V. Benjaminsen, H. H. Sun, J. R. Henriksen, N. M. Christensen, K. Almdal, and T. L. Andresen, ACS Nano, 5, 5864 (2011).

    Article  CAS  Google Scholar 

  28. J. Y. Han and K. Burgess, Chem. Rev., 110, 2709 (2010).

    Article  CAS  Google Scholar 

  29. S. G. Schulman, S. Chen, F. Bai, M. J. Leiner, L. Weis, and O. S. Wolfbeis, Anal. Chim. Acta, 304, 165 (1995).

    Article  CAS  Google Scholar 

  30. R. V. Benjaminsen, H. Sun, J. R. Henriksen, N. M. Christensen, K. Almdal, and T. L. Andresen, ACS Nano, 5, 5864 (2011).

    Article  CAS  Google Scholar 

  31. T. A. Krulwich, G. Sachs, and E. Padan, Nat. Rev. Microbiol., 9, 330 (2011).

    Article  CAS  Google Scholar 

  32. S. Park, G. S. Lee, C. Cui, and D. J. Ahn, Macromol. Res., 24, 380 (2016).

    Article  CAS  Google Scholar 

  33. H. Lee, S. H. Hong, and D. J. Ahn, Macromol. Res., 23, 124 (2015).

    Article  CAS  Google Scholar 

  34. Y. S. Chung, M. Y. Jeon, and C. K. Kim, Macromol. Res., 17, 37 (2009).

    Article  CAS  Google Scholar 

  35. S. T. Ha, O. O. Park, and S. H. Im, Macromol. Res., 18, 321 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong June Ahn.

Additional information

Acknowledgments: This work was supported by the National Research Foundation of Korea (NRF, 2017R1A2B3006770, 2015M3C1A3002152), KU-KIST Graduate School of Converging Science and Technology and a Korea University Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acquah, I., Roh, J. & Ahn, D.J. Dual-fluorophore silica microspheres for ratiometric acidic pH sensing. Macromol. Res. 25, 950–955 (2017). https://doi.org/10.1007/s13233-017-5117-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5117-6

Keywords

Navigation