Skip to main content
Log in

Surface crystallinity of meltspun isotactic polypropylene filaments

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, surface crystallinity of meltspun polypropylene (PP) filaments was reported. Results obtained from attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy were confirmed with tapping mode atomic force microscopy (TM-AFM) analysis. ATR-FTIR tests were performed directly on longitudinal surfaces of the filaments, where IR radiation penetrates up to a specific depth. TM-AFM measurements were done on microtomed cross-sections of the filaments, which were scanned carefully to investigate stiffness. Annealing enhanced the surface crystallinity of the filaments in a significant way. Interestingly, samples annealed at 70 and 110 °C for 12 h exhibited similar crystallinity on the uppermost 500 nm surface, whereas for the bulk a continuous increase was observed after XRD studies. 12 h annealing at 70 °C modified the endothermic thermogram, while it did not causes significant effect on overall bulk crystallinity. Differences in the behavior of surface and bulk of the fibrous materials should be considered particularly for surface treatment, i.e. plasma, corona discharge, chemical vapor deposition. Results are also pertinent for water and dye absorbency in polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Blythe, D. Briggs, C. R. Kendall, D. G. Rance, and V. J. I. Zichy, Polymer, 19, 11 (1978).

    Article  Google Scholar 

  2. K. S. Kim, C. M. Ryu, C. S. Park, G. S. Sur, and C. E. Park, Polymer, 44, 11 (2003).

    Google Scholar 

  3. T. Ogita, A. N. Ponomarev, S. I. Nishimoto, and T. Kagiyat, J. Macromol. Sci., Part A: Chem., 22, 11 (1985).

    Google Scholar 

  4. P. D. Nadkarni, D. O. Kildsig, P. A. Kramer, and G. S. Banker, J. Pharm. Sci., 64, 11 (1975).

    Google Scholar 

  5. R. A. Ryntz, Prog. Org. Coat., 27, 11 (1996).

    Article  Google Scholar 

  6. N. R. Washburn, K. M. Yamada, C. G. Simon Jr., S. B. Kennedy, and E. J. Amis, Biomaterials, 25, 11 (2004).

    Article  Google Scholar 

  7. Y. Arita, S. Sha Shiratori, and K. Ikezaki, J. Electrostat., 57, 11 (2003).

    Article  Google Scholar 

  8. H. Lee and L. A. Archer, Macromolecules, 34, 11 (2001).

    Google Scholar 

  9. R. Spatafore and L. T. Pearson, Polym. Eng. Sci., 31, 11 (1991).

    Article  Google Scholar 

  10. N. Kawamoto, H. Mori, K. Nitta, S. Sasaki, N. Yui, and M. Terano, Macromol. Chem. Phys., 199, 11 (1998).

    Article  Google Scholar 

  11. V. M. De Cupere and P. G. Rouxhet, Polymer, 43, 11 (2002).

    Article  Google Scholar 

  12. O. K. Risnes, R. R. Mather, A. Neville, and J. Buckman, J. Mater. Sci., 38, 11 (2003).

    Article  Google Scholar 

  13. A. De Rovère, R. L. Shambaugh, and A. Edgar, J. Appl. Polym. Sci., 77, 11 (2000).

    Article  Google Scholar 

  14. T. Nishino, T. Matsumoto, and K. Nakamae, Polym. Eng. Sci., 40, 11 (2000).

    Article  Google Scholar 

  15. C. Riekel and R. J. Davies, Curr. Opin. Colloid Interface Sci., 9, 11 (2005).

    Article  Google Scholar 

  16. C. S. P. Sung and J. P. Hobbs, Chem. Eng. Commun., 30, 11 (1984).

    Article  Google Scholar 

  17. T. Yamashita and K. Ikezaki, J. Electrostat., 63, 11 (2005).

    Article  Google Scholar 

  18. R. G. Quynn, J. L. Riley, D. A. Young, and H. D. Noether, J. Appl. Polym. Sci., 2, 11 (1959).

    Article  Google Scholar 

  19. G. Bar, Y. Thomann, R. Brandsch, H. J. Cantow, and M. H. Whangbo, Langmuir, 13, 11 (1997).

    Google Scholar 

  20. G. Bar, M. Ganter, R. Brandsch, L. Delineau, and M.-H. Whangbo, Langmuir, 16, 11 (2000).

    Article  Google Scholar 

  21. K. D. Jandt, Mater. Sci. Eng. R, Rep., 21, 11 (1998).

    Article  Google Scholar 

  22. G. Wen, X. Li, Y. Liao, and L. An, Polymer, 44, 11 (2003).

    Article  Google Scholar 

  23. M. Konrad, A. Knoll, G. Krausch, and R. Magerle, Macromolecules, 33, 11 (2000).

    Article  Google Scholar 

  24. R. Garcı́a and R. Pérez, Surf. Sci. Rep., 47, 11 (2002).

    Google Scholar 

  25. S. N. Magonov, V. Elings, and M.-H. Whangbo, Surf. Sci., 375, 11 (1997).

    Article  Google Scholar 

  26. Y. Fujiwara, J. Appl. Polym. Sci., 4, 11 (1960).

    Article  Google Scholar 

  27. R. J. Davies, M. A. Montes-Morán, C. Riekel, and R. J. Young, J. Mater. Sci., 38, 11 (2003).

    Article  Google Scholar 

  28. C. Riekel, T. Dieing, P. Engström, L. Vincze, C. Martin, and A. Mahendrasingam, Macromolecules, 32, 11 (1999).

    Google Scholar 

  29. C. Riekel, C. L. Craig, M. Burghammer, and M. Müller, Naturwissenschaften, 88, 11 (2001).

    Google Scholar 

  30. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley and Sons, Chichester, 2004.

    Book  Google Scholar 

  31. J. P. Hobbs, C. S. P. Sung, K. Krishnan, and S. Hill, Macromolecules, 16, 11 (1983).

    Article  Google Scholar 

  32. C. Bonnerup and P. Gatenholm, J. Polym. Sci., Part B: Polym. Phys., 31, 11 (1993).

    Article  Google Scholar 

  33. W. Heinen, J. Polym. Sci., 38, 11 (1959).

    Article  Google Scholar 

  34. G. Kortum, in Reflectance Spectroscopy: Principles, Methods, Applications, Springer, New York, 1969, p 132.

    Book  Google Scholar 

  35. M. F. S. Lima, M. A. Z. Vasconcellos, and D. Samios, J. Polym. Sci., Part B: Polym. Phys., 40, 11 (2002).

    Article  Google Scholar 

  36. S. Z. D. Cheng, J. J. Janimak, A. Zhang, and E. T. Hsieh, Polymer, 32, 11 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kilic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, A., Jones, K., Shim, E. et al. Surface crystallinity of meltspun isotactic polypropylene filaments. Macromol. Res. 24, 25–30 (2016). https://doi.org/10.1007/s13233-016-4011-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4011-y

Keywords

Navigation