Skip to main content
Log in

Flexible free-standing composite films having 3D continuous structures of hollow graphene ellipsoids

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Graphene composites have great potential in electrical and electronic applications due to their outstanding physicochemical, electrical, and mechanical properties. Unfortunately, current graphene preparation technologies allow the exploitation of only an exceptionally low percentage of graphene’s capability. Herein, free-standing graphene films based on three-dimensional (3D) continuous structures of hollow graphene ellipsoids were successfully fabricated, whose composite structure has never been investigated. Positively charged polystyrene (PS) spheres were first wrapped with negatively charged graphene upon simple mixing, and became ellipsoids by stretching. Due to their improved continuity, composites based on the ellipsoids and spherical microparticles have lower sheet resistances than those based on spherical nanoparticles. Upon folding and application of pressure, composites based on the hollow graphene ellipsoids exhibited superior electrical conductivity and structural stability owing to their high mechanical strength and effective electron transport pathway. The ability to control the face-contact structures of graphene in a polymer matrix by means of particle morphology represents an effective strategy for future composite engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Wu, Y. Xu, Z. Yao, A. Liu, and G. Shi, ACS Nano, 4, 1963 (2010).

    Article  CAS  Google Scholar 

  2. L. Liu, Z. Niu, L. Zhang, W. Zhou, X. Chen, and S. Xie, Adv. Mater., 26, 4855 (2014).

    Article  CAS  Google Scholar 

  3. K. C. Kwon, K. S. Choi, and S. Y. Kim, Adv. Funct. Mater., 22, 4724 (2012).

    Article  CAS  Google Scholar 

  4. B. Yang, H. Xu, J. Lu, and K. P. Loh, J. Am. Chem. Soc., 136, 12041 (2014).

    Article  CAS  Google Scholar 

  5. Y. Kim, J. H. Park, J. Jung, and S.-S. Lee, Nanoscale, 7, 2729 (2015).

    Article  CAS  Google Scholar 

  6. X. Li, Y. Zhao, W. Wu, J. Chen, G. Chu, and H. Zou, J. Ind. Eng. Chem., 20, 2043 (2014).

    Article  CAS  Google Scholar 

  7. G. Mittal, V. Dhand, K. Y. Rhee, S.-J. Park, and W. R. Lee, J. Ind. Eng. Chem., 21, 11 (2014).

    Article  Google Scholar 

  8. S. Yin, Z. Niu, and X. Chen, Small, 8, 2458 (2012).

    Article  CAS  Google Scholar 

  9. S. A. Ju, K. Kim, J.-H. Kim, and S.-S. Lee, ACS Appl. Mater. Interfaces, 3, 2904 (2011).

    Article  CAS  Google Scholar 

  10. J. Lee and Y. Cheng, J. Control. Release, 111, 185 (2006).

    Article  CAS  Google Scholar 

  11. J. Lee, J. Pharm. Sci., 92, 2057 (2003).

    Article  CAS  Google Scholar 

  12. M. K. Lee and J. Lee, Cryst. Growth Des., 13, 671 (2013).

    Article  CAS  Google Scholar 

  13. J. Hur and J. Bae, J. Ind. Eng. Chem., 21, 851 (2015).

    Article  CAS  Google Scholar 

  14. H. Im and J. Kim, Carbon, 50, 5429 (2012).

    Article  CAS  Google Scholar 

  15. H. Okada, J. Pharm. Invest., 44, 505 (2014).

    Article  CAS  Google Scholar 

  16. Y. Lee, I. Yang, J. E. Lee, S. Hwang, J. W. Lee, S.-S. Um, T. L. Nguyen, P. J. Yoo, H. Y. Woo, and J. Park, J. Phys. Chem. C, 117, 3298 (2013).

    Article  CAS  Google Scholar 

  17. N. H. Kim, B. J. Kim, Y. Ko, J. H. Cho, and S. T. Chang, Adv. Mater., 25, 894 (2013).

    Article  CAS  Google Scholar 

  18. S. Khvan, J. Kim, and S.-S. Lee, J. Colloid Interface Sci., 306, 22 (2007).

    Article  CAS  Google Scholar 

  19. S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature, 442, 282 (2006).

    Article  CAS  Google Scholar 

  20. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Chem. Mater., 11, 771 (1999).

    Article  CAS  Google Scholar 

  21. S. M. Al-Reza, A. Rahman, J. Lee, and S. C. Kang, Food Chem., 119, 981 (2010).

    Article  CAS  Google Scholar 

  22. J. Choi, N. D. Tu, S.-S. Lee, H. Lee, J. S. Kim, and H. Kim, Macromol. Res., 22, 1104 (2014).

    Article  CAS  Google Scholar 

  23. J. Casanovas, J. M. Ricart, J. Rubio, F. Illas, and J. M. Jiménez-Mateos, J. Am. Chem. Soc., 118, 8071 (1996).

    Article  CAS  Google Scholar 

  24. A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. Novoselov, and S. Roth, Phys. Rev. Lett., 97, 187401 (2006).

    Article  CAS  Google Scholar 

  25. Y. Hu, J. Ge, T. Zhang, and Y. Yin, Adv. Mater., 20, 4599 (2008).

    Article  CAS  Google Scholar 

  26. J. A. Champion, Y.K. Katare, and S. Mitragotri, Proc. Natil. Acad. Sci., 104, 11901 (2007).

    Article  CAS  Google Scholar 

  27. B. Madivala, J. Fransaer, and J. Vermant, Langmuir, 25, 2718 (2009).

    Article  CAS  Google Scholar 

  28. M. Basavaraj, G. Fuller, J. Fransaer, and J. Vermant, Langmuir, 22, 6605 (2006).

    Article  CAS  Google Scholar 

  29. P. J. Yunker, T. Still, M. A. Lohr, and A. Yodh, Nature, 476, 308 (2011).

    Article  CAS  Google Scholar 

  30. L. Botto, E. P. Lewandowski, M. Cavallaro, and K. J. Stebe, Soft Matter, 8, 9957 (2012).

    Article  CAS  Google Scholar 

  31. K. Halake, M. Birajdar, B. S. Kim, H. Bae, C. Lee, Y. J. Kim, S. Kim, H. J. Kim, S. Ahn, and S. Y. An, J. Ind. Eng. Chem., 20, 3913 (2014).

    Article  CAS  Google Scholar 

  32. J. H. Kim, T. K. Ryu, K. Y. Jeong, D.-H. Paik, S.-K. Moon, and S.-W. Choi, J. Pharm. Invest., DOI: {Rs 10.1007/s40005-014-0162-z DOI } (2014).

    Google Scholar 

  33. D. Ghanbari, M. Salavati-Niasari, and M. Ghasemi-Kooch, J. Ind. Eng. Chem., 20, 3970 (2014).

    Article  CAS  Google Scholar 

  34. A. Dey, R. Bera, S. Ahmed, D. Chakrabarty, J. Ind. Eng. Chem., 21, 1219 (2015).

    Article  CAS  Google Scholar 

  35. B. Hui, Y. Zhang, and L. Ye, J. Ind. Eng. Chem., DOI: 10.1016/j.jiec.2014.04.025 (2014).

    Google Scholar 

  36. G. H. Mirzabe and A. R. Keshtkar, J. Ind. Eng. Chem., DOI: 10.1016/j.jiec.2014.11.040 (2014).

    Google Scholar 

  37. S. Abbasizadeh, A. R. Keshtkar, and M. A. Mousavian, J. Ind. Eng. Chem., 20, 1656 (2014).

    Article  CAS  Google Scholar 

  38. Y. Liu, M. Park, H. K. Shin, B. Pant, J. Choi, Y. W. Park, J. Y. Lee, S.-J. Park, and H.-Y. Kim, J. Ind. Eng. Chem., 20, 4415 (2014).

    Article  CAS  Google Scholar 

  39. M. Wisniewska, K. Szewczuk-Karpisz, I. Ostolska, T. Urban, K. Terpilowski, V. Zarko, and V. Gun’ko, J. Ind. Eng. Chem., DOI: 10.1016/j.jiec.2014.08.027 (2014).

    Google Scholar 

  40. Y. Kim, M. Kim, J. K. Choi, and S. E. Shim, Polym. Korea, 39, 136 (2015).

    Article  CAS  Google Scholar 

  41. H. Y. Yeom, H. Y. Na, D. W. Chung, and S. J. Lee, Polym. Korea, 39, 468 (2015).

    Article  CAS  Google Scholar 

  42. J. Ju and J. H. Chang, Polym. Korea, 39, 88 (2015).

    Article  CAS  Google Scholar 

  43. J. H. Lee, C. H. Oh, J. H. Lim, and K. M. Kim, Polym. Korea, 39, 180 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jonghwi Lee or Sang-Soo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E.G., Shin, KY., Lee, J. et al. Flexible free-standing composite films having 3D continuous structures of hollow graphene ellipsoids. Macromol. Res. 23, 552–558 (2015). https://doi.org/10.1007/s13233-015-3072-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3072-7

Keywords

Navigation