Skip to main content
Log in

Murine ovarian follicle culture in PEG-hydrogel: Effects of mechanical properties and the hormones FSH and LH on development

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The development of an in vitro culture system, comparable to the in vivo environment in terms of effects on oocyte growth and development, could provide a valuable experimental tool for studying the mechanisms governing oocyte development as well as practical clinical, agricultural, zoological, and biotechnological applications. This study reports on the importance of the microenvironment for the ovarian folliculogenesis process. The complexity of such a microenvironment was approached with a strategy based on functionalized PEG-hydrogels. The PEG matrix not only serves as a scaffold, but it is also used a reservoir of immobilized cues. Using tethered integrin-binding peptides in combination with other signaling factors, we aimed at better understanding the interactions of the oocyte and its surrounding granulosa that may determine the efficiency of the actual and the future in vitro mature oocyte production. In a first step, the mechanical properties of PEG-hydrogel were optimized for producing secondary follicles, in which the oocyte is surrounded by two layers of granulosa cells. Follicle growth was highly dependent on the mechanical properties of the surrounding environment, with the optimal elastic modulus being approx. 1 kPa. The effects of key soluble factors were also investigated to confirm their compatibility with the established 3-D culture system and to further qualitatively and quantitatively improve the produced mature oocytes. Accordingly, various combinations of the gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were tested. Interestingly, the effects of the gonadotropins in the 3-D PEG system were close to their known in vivo effects. In conclusion, this study demonstrates the efficiency and the flexibility of a novel 3-D culture system, PEG-hydrogel. Circumventing problems inherent to the “on-plastic” standard culture, such as the loss of the granulosa-oocyte interactions, allowed the emergence of a culture system tailored for investigating fundamental folliculogenesis-related questions. Furthermore, the reported culture system may serve as a platform for developing clinical and biotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Godwin, D. Kuraitis, and N. Rosenthal, Int. J. Biochem. Cell Biol., 56C, 47 (2014).

    Article  Google Scholar 

  2. R. J. Rodgers, H. F. Irving-Rodgers, and I. L. van Wezel, Mol. Cell. Endocrinol., 163, 73 (2000).

    Article  CAS  Google Scholar 

  3. H. F. Irving-Rodgers and R. J. Rodgers, Cell Tissue Res., 322, 89 (2005).

    Article  Google Scholar 

  4. M. F. Smith, W. A. Ricke, L. J. Bakke, M. P. D. Dow, and G. W. Smith, Mol. Cell. Endocrinol., 191, 45 (2002).

    Article  CAS  Google Scholar 

  5. E. E. Telfer and M. B. Zelinski, Fertil. Steril., 99, 1523 (2013).

    Article  Google Scholar 

  6. T. Miyano, J. Reprod. Dev., 51, 169 (2005).

    Article  Google Scholar 

  7. K. Liu, P. Wahlberg, G. Leonardsson, A. C. Hagglund, A. Ny, I. Boden, C. Wibom, L. R. Lund, and T. Ny, Dev. Biol., 295, 615 (2006).

    Article  CAS  Google Scholar 

  8. A. C. Hagglund, A. Ny, G. Leonardsson, and T. Ny, Endocrinology, 140, 4351 (1999).

    CAS  Google Scholar 

  9. B. Goxe, J. E. Flechon, S. Delasalle, and R. Salesse, Biol. Cell, 83, 169 (1995).

    Article  CAS  Google Scholar 

  10. J. J. Eppig, M. OBrien, and K. Wigglesworth, Mol. Reprod. Dev., 44, 260 (1996).

    Article  CAS  Google Scholar 

  11. A. J. W. Hsueh, H. Billig, and A. Tsafriri, Endocr. Rev., 15, 707 (1994).

    CAS  Google Scholar 

  12. M. H. Abel, A. N. Wootton, V. Wilkins, I. Huhtaniemi, P. G. Knight, and H. M. Charlton, Endocrinology, 141, 1795 (2000).

    CAS  Google Scholar 

  13. A. P. Almeida, D. M. Magalhaes-Padilha, V. R. Araujo, S. L. Costa, R. N. Chaves, C. A. Lopes, M. A. Donato, C. A. Peixoto, C. C. Campello, J. B. Junior, and J. R. Figueiredo, Anim. Reprod. Sci., 152, 32 (2015).

    Article  CAS  Google Scholar 

  14. I. Adriaens, R. Cortvrindt, and J. Smitz, Hum. Reprod., 19, 398 (2004).

    Article  CAS  Google Scholar 

  15. R. J. Urban, J. C. Garmey, M. A. Shupnik, and J. D. Veldhuis, Endocrinology, 128, 2000 (1991).

    Article  CAS  Google Scholar 

  16. J. M. Silva, M. Hamel, M. Sahmil, and C. A. Price, Reproduction, 132, 909 (2006).

    Article  CAS  Google Scholar 

  17. I. Demeestere, J. Centner, C. Gervy, Y. Englert, and A. Delbaere, Reproduction, 130, 147 (2005).

    Article  CAS  Google Scholar 

  18. M. J. O'Brien, J. K. Pendola, and J. J. Eppig, Biol. Reprod., 68, 1682 (2003).

    Article  Google Scholar 

  19. P. L. Nayudu and S. M. Osborn, J. Reprod. Fertil., 95, 349 (1992).

    Article  CAS  Google Scholar 

  20. J. D. Mao, G. M. Wu, M. F. Smith, T. C. McCauley, T. C. Cantley, R. S. Prather, B. A. Didion, and B. N. Day, Biol. Reprod., 67, 1197 (2002).

    Article  CAS  Google Scholar 

  21. R. Cortvrindt, J. Smitz, and A. C. VanSteirteghem, Hum. Reprod., 12, 759 (1997).

    Article  CAS  Google Scholar 

  22. L. M. Mitchell, C. R. Kennedy, and G. M. Hartshorne, Hum. Reprod., 17, 1181 (2002).

    Article  CAS  Google Scholar 

  23. A. B. Galway, P. S. Lapolt, A. Tsafriri, C. M. Dargan, I. Boime, and A. J. W. Hsueh, Endocrinology, 127, 3023 (1990).

    Article  CAS  Google Scholar 

  24. R. Cortvrindt, Y. Hu, and J. Smitz, Hum. Reprod., 13, 1292 (1998).

    Article  CAS  Google Scholar 

  25. S. T. Lee, M. H. Choi, E. J. Lee, S. P. Gong, M. Jang, S. H. Park, H. Jee, D. Y. Kim, J. Y. Han, and J. M. Lim, Fertil. Steril., 19, 1193 (2007).

    Google Scholar 

  26. S. A. Pangas, H. Saudye, L. D. Shea, and T. K. Woodruff, Tissue Eng., 9, 1013 (2003).

    Article  CAS  Google Scholar 

  27. M. P. Lutolf and J. A. Hubbell, Biomacromolecules, 4, 713 (2003).

    Article  CAS  Google Scholar 

  28. T. P. Kraehenbuehl, P. Zammaretti, A. J. Van der Vlies, R. G. Schoenmakers, M. P. Lutolf, M. E. Jaconi, and J. A. Hubbell, Biomaterials, 29, 2757 (2008).

    Article  CAS  Google Scholar 

  29. U. Eichenlaubritter and I. Betzendahl, Mutagenesis, 10, 477 (1995).

    Article  CAS  Google Scholar 

  30. J. Liu, A. Rybouchkin, J. Van der Elst, and M. Dhont, Biol. Reprod., 67, 575 (2002).

    Article  CAS  Google Scholar 

  31. R. Cortvrindt and J. Smitz, Reprod. Domest. Anim., 36, 3 (2001).

    Article  CAS  Google Scholar 

  32. S. Senbon, Y. Hirao, and T. Miyano, J. Reprod. Dev., 49, 259 (2003).

    Article  CAS  Google Scholar 

  33. J. J. Eppig, J. Exp. Zool., 198, 375 (1976).

    Article  CAS  Google Scholar 

  34. D. T. Heller, D. M. Cahill, and R. M. Schultz, Dev. Biol., 84, 455 (1981).

    Article  CAS  Google Scholar 

  35. E. Anderson and D. F. Albertini, J. Cell Biol., 71, 680 (1976).

    Article  CAS  Google Scholar 

  36. R. K. Assoian and E. A. Klein, Trends Cell Biol., 18, 347 (2008).

    Article  CAS  Google Scholar 

  37. F. Brandl, F. Sommer, and A. Goepferich, Biomaterials, 28, 134 (2007).

    Article  CAS  Google Scholar 

  38. M. Xu, E. West, L. D. Shea, and T. K. Woodruff, Biol. Reprod., 75, 916 (2006).

    Article  CAS  Google Scholar 

  39. E. R. West, M. Xu, T. K. Woodruff, and L. D. Shea, Biomaterials, 28, 4439 (2007).

    Article  CAS  Google Scholar 

  40. J. L. Drury and D. J. Mooney, Biomaterials, 24, 4337 (2003).

    Article  CAS  Google Scholar 

  41. D. J. Tisdall, K. Watanabe, N. L. Hudson, P. Smith, and K. P. Mcnatty, J. Mol. Endocrinol., 15, 273 (1995).

    Article  CAS  Google Scholar 

  42. K. Oktay, D. Briggs, and R. G. Gosden, J. Clin. Endocr. Metab., 82, 3748 (1997).

    CAS  Google Scholar 

  43. N. I. Boland, P. G. Humpherson, H. J. Leese, and R. G. Gosden, Biol. Reprod., 48, 798 (1993).

    Article  CAS  Google Scholar 

  44. A. J. W. Hsueh, E. Y. Adashi, P. B. C. Jones, and T. H. Welsh, Endocr. Rev., 5, 76 (1984).

    Article  CAS  Google Scholar 

  45. M. A. Sirard, S. Desrosier, and A. Assidi, Theriogenology, 68, S71 (2007).

    Article  CAS  Google Scholar 

  46. A. Kaipia and A. J. W. Hsueh, Annu. Rev. Physiol., 59, 349 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Hubbell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihm, J.E., Lee, S.T., Han, D.K. et al. Murine ovarian follicle culture in PEG-hydrogel: Effects of mechanical properties and the hormones FSH and LH on development. Macromol. Res. 23, 377–386 (2015). https://doi.org/10.1007/s13233-015-3045-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3045-x

Keywords

Navigation