Skip to main content
Log in

Polyurethane membrane with temperature- and pH-Controllable permeability for amino-acids

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This work was focused on the investigation of the temperature- and pH-responsive polyurethane (PU) membranes and their permeability to amino-acids in response to environmental stimuli. The PU membrane was prepared from a wet phase inversion method and a two-step solution polymerization from polycaprolactone diols (PCL), 4,4'-diphenylmethane diisocyanate (MDI), dimethylol propionic acid (DMPA), etc. The chemical structure, phase state, morphology and surface wettability of the membrane were characterized with Fourier transform infrared (FTIR) spectrometer, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and contact angle tester, respectively. The temperature and pH responses of the membrane were investigated by means of an amino-acid permeate experiment. The L-phenylalanine (L-Phe) was chosen as model amino-acids. The permeation of the L-Phe was measured using a dead-end flow filtration at varied temperatures and pH, and characterized by the permeate flux (J) and rejection coefficient (R). J of the L-Phe across the PU membrane increased with increasing temperature and showed a sharp increase when temperature was raised to the crystalline melting temperature (T m ) of the soft segment of PU, while decreased with increasing pH and having a sharp decrease when pH reached the dissociation constant (pK a ) of DMPA contained in PU macromolecules. While, the R behavior of L-Phe was just opposite from the results of J, which decreased with increasing temperature and increased with increasing pH, also showing the temperature and pH responses. Hopefully, the PU membrane with temperature- and pH-controllable permeability has promising prospects in water treatment, membrane separation, drug delivery system, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Wandera, S. R. Wickramasinghe, and S. M. Husson, J. Membr. Sci., 357, 6 (2010).

    Article  CAS  Google Scholar 

  2. M. A. C. Stuart, W. T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. A. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, and S. Minko, Nat. Mater., 9, 101 (2010).

    Article  Google Scholar 

  3. L. Chu, R. Xie, and X. Ju, Chin. J. Chem. Eng., 19, 891 (2011).

    Article  CAS  Google Scholar 

  4. P. Brown, C. P. Butts, and J. Eastoe, Soft Matter, 9, 2365 (2013).

    Article  CAS  Google Scholar 

  5. D. Roy, J. N. Cambre, and B. S. Sumerlin, Prog. Polym. Sci., 35, 278 (2010).

    Article  CAS  Google Scholar 

  6. Y. He, X. Chen, S. Bi, W. Fu, C. Shi, and L. Chen, React. Funct. Polym., 74, 58 (2014).

    Article  CAS  Google Scholar 

  7. D. Schmaljohann, Adv. Drug Deliver. Rev., 58, 1655 (2006).

    Article  CAS  Google Scholar 

  8. C. Zhao, X. Zhuang, P. He, C. Xiao, C. He, J. Sun, X. Chen, and X. Jing, Polymer, 50, 4308 (2009).

    Article  CAS  Google Scholar 

  9. R. T. Pearson, N. J. Warren, A. L. Lewis, S. P. Armes, and G, Battaglia, Macromolecules, 46, 1400 (2013).

    Article  CAS  Google Scholar 

  10. Y. Chen, Y. Liu, H. Fan, H. Li, B. Shi, H. Zhou, and B. Peng, J. Membr. Sci., 287, 192 (2007).

    Article  CAS  Google Scholar 

  11. H. Zhou, J. Zeng, H. Fan, Y. Liu, and J. Zhou, Macromol. Res., 18, 1053 (2010).

    Article  CAS  Google Scholar 

  12. H. Zhou, H. Shi, H. Fan, J. Zhou, and J. Yuan, Macromol. Res., 17, 528 (2009).

    Article  CAS  Google Scholar 

  13. H. Zhou, J. Zhou, H. Fan, Y. Chen, F. Yang, J. Yuan, and R. Liu, Desalination, 249, 843 (2009).

    Article  CAS  Google Scholar 

  14. J. Leng, X. Lan, Y. Liu, and S. Du, Prog. Mater. Sci., 56, 1077 (2011).

    Article  CAS  Google Scholar 

  15. P. N. Lan, S. Corneillie, E. Schacht, M. Davies, and A. Shard, Biomaterials, 17, 2273 (1996).

    Article  CAS  Google Scholar 

  16. K. Y. Chen, J. F. Kuo, and C. Y. Chen, Biomaterials, 21, 161 (2000).

    Article  Google Scholar 

  17. K. C. Khulbe, C. Feng, and T. Matsuura, J. Appl. Polym. Sci., 115, 855 (2010).

    Article  CAS  Google Scholar 

  18. X. L. Wang, A. L. Ying, and W. N. Wang, J. Membr. Sci., 196, 59 (2002).

    Article  CAS  Google Scholar 

  19. M. J. Yim, J. E. Kim, C. H. Ahn, H. A. Kim, M. Lee, and S. Y. Chae, Macromol. Res., 18, 545 (2010).

    Article  CAS  Google Scholar 

  20. J. Zhang, X. Zhou, Z. Zhou, H. Chen, and L. Chen, Macromol. Res., 22, 515 (2014).

    Article  CAS  Google Scholar 

  21. Y. K. Jhon, I. W. Cheong, and J. H. Kim, Colloids Surf. A, 179, 71 (2001).

    Article  CAS  Google Scholar 

  22. M. G. Buonomenna, P. Macchi, M. Davoli, and E. Drioli, Eur. Polym. J., 43, 1557 (2007).

    Article  CAS  Google Scholar 

  23. C. Stropnik and V. Kaiser, Desalination, 145, 1 (2002).

    Article  CAS  Google Scholar 

  24. Z. Cheng, M. Du, K. Fu, N. Zhang, and K. Sun, ACS Appl. Mater. Inter., 4, 5826 (2012).

    Article  CAS  Google Scholar 

  25. M. H. Cohen and D. Turnbull, J. Chem. Phys., 31, 1164 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Zhou or Zhihua Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Xun, R., Wu, K. et al. Polyurethane membrane with temperature- and pH-Controllable permeability for amino-acids. Macromol. Res. 23, 94–99 (2015). https://doi.org/10.1007/s13233-015-3002-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3002-8

Keywords

Navigation