Skip to main content
Log in

Electrical properties of cellulose-based carbon fibers investigated using atomic force microscopy

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Natural fibers have been actively investigated for the reinforcement of biocomposite, absorbent, and functional fibers, because of their environmentally friendly properties. We manufactured carbon materials based on two different natural fibers by heat treatment at 700, 900, and 1100 °C, respectively. The thermal behavior, surface morphology, and electrical properties of these carbon materials were investigated by thermogravimetric analysis (TGA) and atomic force microscopy (AFM); specifically, the electrical properties were studied through three-dimensional current images, and the current-voltage curve (I–V) characteristics using current-atomic force microscopy (c-AFM) on a nano-ampere scale. The thermal stability, roughness, and local current of the carbon materials were improved by increasing the carbonization temperature, and carbonized filter paper (FP) showed higher values in all characterization analyses than carbonized henequen (HQ) due to the higher content of cellulose in FP. Moreover, the currentvoltage characteristics of carbonized FP at 1100 °C and commercial carbon fiber were similar at high voltages (−5 or 5 V). Therefore, we expected that carbon materials from FP would be more suitable than HQ for use as environmentally friendly electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. K. Seo and S. J. Park, Polym. Sci. Technol., 21, 130 (2010).

    CAS  Google Scholar 

  2. H. Kim, N. J. Jeong, and S. O. Han, Appl. Catal. B: Environ., 113–114, 116 (2012).

    Article  Google Scholar 

  3. X. Xie, B. Goodell, D. Zhang, D. C. Nagle, Y. Qian, M. L. Peterson, and J. Jellison, Bioresour. Technol., 100, 1797 (2009).

    Article  CAS  Google Scholar 

  4. A. Macías-Garcíaa, E. M. Cuerda-Correab, M. Olivares-Marínb, A. Díaz-Paralejoa, and M. Á. Díaz-Díeza, Ind. Crops Prod., 35, 105 (2012).

    Article  Google Scholar 

  5. R. C. Zhuanga, T. T. L. Doana, J. W. Liua, J. Zhanga, S. L. Gaoa, and E. Mäder, Carbon, 49, 2683 (2011).

    Article  Google Scholar 

  6. N. J. Jeong, S. O. Han, H. Kim, H. S. Kim, and Y. J. You, J. Mater. Sci., 46, 2041 (2011).

    Article  CAS  Google Scholar 

  7. D. Cho, S. G. Lee, W. H. Park, and S. O. Han, Polym. Sci. Technol., 13, 460 (2002).

    CAS  Google Scholar 

  8. Y. H. Han, S. O. Han, D. Cho, and H. I. Kim, Macromol. Symp., 245–246, 539 (2006).

    Article  Google Scholar 

  9. O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Macromol. Mater. Eng., 299, 9 (2013).

    Article  Google Scholar 

  10. H. Y. Choi, S. O. Han, and J. S. Lee, Appl. Surf. Sci., 255, 2466 (2008).

    Article  CAS  Google Scholar 

  11. X. Xie, B. Goodel, G. Daniel, Y. Qian, J. Jellison, and M. Peterson, Int. Biodeterior. Biodegradation, 63, 933 (2009).

    Article  CAS  Google Scholar 

  12. M. Inagaki, T. Nishikawa, K. Sakuratani, T. Katakura, H. Konno, and E. Morozumi, Carbon, 42, 890 (2004).

    Article  CAS  Google Scholar 

  13. E. M. Cuerda-Correa, A. Macías-García, M. A. Díaz Díez, and A. L. Ortiz, Microporous Mesoporous Mater., 111, 523 (2008).

    Article  CAS  Google Scholar 

  14. M. M. R. Khan, Y. Gotoh, H. Morikawa, M. Miura, Y. Fujimori, and M. Nagura, Carbon, 45, 1035 (2007).

    Article  CAS  Google Scholar 

  15. X. Liu, Y. Gu, and J. Huang, Chem. Eur. J., 16, 7730 (2010).

    Article  CAS  Google Scholar 

  16. N. H. Phan, S. Rio, C. Faur, L. Coq, P. L. Cloirec, and T. H. Nguyen, Carbon, 44, 2569 (2006).

    Article  CAS  Google Scholar 

  17. C. E. Byrne and D. C. Nagle, Carbon, 35, 267 (1997).

    Article  CAS  Google Scholar 

  18. J. M. Kim, I. S. Song, D. Cho, and I. Hong, Carbon Lett., 12, 131 (2011).

    Article  Google Scholar 

  19. W. Chen, X. Liu, R. L. He, T. Lin, Q. F. Zeng, and X. G. Wang, Powder Tech., 234, 76 (2013).

    Article  CAS  Google Scholar 

  20. S. Bhardwaj, M. Sharon, T. Ishihara, S. Jayabhaye, R. Afre, T. Soga, and M. Sharon, Carbon Lett., 8, 285 (2007).

    Article  Google Scholar 

  21. V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas, and B. Wei, J. Phys. Chem. C, 111, 7527 (2007).

    Article  CAS  Google Scholar 

  22. Y. J. Kim, Y. Abe, T. Yanagiura, K. C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, and M. S. Dresselhaus, Carbon, 45, 2116 (2007).

    Article  CAS  Google Scholar 

  23. Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang, and H. Xu, Mater. Chem. Phys., 80, 704 (2003).

    Article  CAS  Google Scholar 

  24. J. I. Paredes, A. Martínez-Alonso, and J. M. D. Tascón, Microporous Mesoporous Mater., 65, 93 (2003).

    Article  CAS  Google Scholar 

  25. L. Andolfi and S. Cannistraro, Surf. Sci., 598, 68 (2005).

    Article  CAS  Google Scholar 

  26. L. T. Lee, S. Ito, H. Benten, H. Ohkita, and D. Mori, Ambio, 41, 135 (2012).

    Article  CAS  Google Scholar 

  27. T. W. Kelley, E. Granstrom, and C. D. Frisbie, Adv. Mater., 11, 261 (1999).

    Article  CAS  Google Scholar 

  28. http://www.parkafm.com/index.php/park-spm-modes/94-electrical- properties/233-conductive-afm.

  29. C. Baldacchini and S. Cannistraro, Appl. Phys. Lett., 91, 122103 (2007).

    Article  Google Scholar 

  30. T. K. Ghanem, E. D. Williams, and M. S. Fuhrer, J. Appl. Phys., 110, 054305 (2011).

    Article  Google Scholar 

  31. L. Rispa, T. Ruland, Y. Stefanov, F. Wessely, and U. Schwalke, J. Electrochem. Soc., 3, 441 (2006).

    Google Scholar 

  32. J. H. Heo, Trans. Electr. Electron. Mater., 11, 271 (2010).

    Article  Google Scholar 

  33. J. R. O’Dea, L. M. Brown, N. Hoepker, J. A. Marohn, and S. Sadewasser, MRS Bulletin, 37, 642 (2012).

    Article  Google Scholar 

  34. J. H. Choi, X. You, C. Kim, J. G. Park, and J. J. Pak, J. Electr. Eng. Technol., 5, 640 (2010).

    Article  Google Scholar 

  35. R. H. Shin, W. Jo, D. W. Kim, J. H. Yun, and S. Ahn, Appl. Phys. A, 104, 1189 (2011).

    Article  CAS  Google Scholar 

  36. A. Alexeev, J. Loos, and M. M. Koetse, Ultramicroscopy, 106, 191 (2006).

    Article  CAS  Google Scholar 

  37. Y. R. Rhim, D. Zhang, D. Howard Fairbrother, K. A. Wepasnick, K. J. Livi, R. J. Bodnar, and D. C. Nagle, Carbon, 48, 1012 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Ok Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, I.N., Han, S.O., Kim, H. et al. Electrical properties of cellulose-based carbon fibers investigated using atomic force microscopy. Macromol. Res. 22, 996–1003 (2014). https://doi.org/10.1007/s13233-014-2130-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2130-x

Keywords

Navigation