Skip to main content
Log in

Mechanism of albumin release from alginate and chitosan beads fabricated in dual layers

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Biocompatible polysaccharides, such as alginate and chitosan are widely used as drug carriers. Microspheres based on the electrostatic interaction between these two polymers have been attractive as a means to deliver protein drugs because the use of organic solvents can be avoided during their preparation. On the other hand, the mechanisms for drug release, such as disintegration of microspheres, are not completely understood. This paper examined the phenomena of disintegration of the core-shell type microspheres consisting of alginate and chitosan. The microspheres formed by either chitosan-coated alginate or alginate-coated chitosan were generated using a labmade instrument consisting of a syringe pump connected to a glass nozzle. Using fluorophore-labeled polysaccharides, the disintegration of each polymer layer from the microspheres was monitored as a function of time. The alginate- coated chitosan microspheres demonstrated enhanced stability with increasing concentration of the chitosan core. The presence of an alginate shell itself also increased the stability of the microsphere compared to the microspheres without an alginate coating. The chitosan concentration, however, did not have any effect on the stability of the chitosan-coated alginate microspheres. The microspheres synthesized with alginate in the core demonstrated concentration-dependent stability. In these microsphere experiments, the microsphere stability was found to be related directly to the protein release kinetics. In the alginate/chitosan-based microspheres, the disintegration property is the primary factor modulating the encapsulated drug release, which suggests the easiest simple method for time-dependent protein drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Douglas and M. Tabrizian, J. Biomater. Sci., Polym. Ed., 16, 43 (2005)

    Article  CAS  Google Scholar 

  2. Y. Kaneko and J. Kadokawa, J. Biomater. Sci., Polym. Ed., 17, 1269 (2006)

    Article  CAS  Google Scholar 

  3. S. Ye, C. Wang, X. Liu, and Z. Tong, J. Biomater. Sci., Polym. Ed., 16, 909 (2005)

    Article  CAS  Google Scholar 

  4. S. W. Xu, Y. Lu, J. Li, Y. F. Zhang, and Z. Y. Jiang, J. Biomater. Sci., Polym. Ed., 18, 71 (2007)

    Article  CAS  Google Scholar 

  5. A. D. Sezer and J. Akbuga, J. Microencapsul., 16, 195 (1999)

    Article  CAS  Google Scholar 

  6. A. D. Sezer and J. Akbuga, J. Microencapsul., 16, 687 (1999)

    Article  CAS  Google Scholar 

  7. A. J. Ribeiro, R. J. Neufeld, P. Arnaud, and J. C. Chaumeil, Int. J. Pharm., 187, 115 (1999)

    Article  CAS  Google Scholar 

  8. K. Y. Lee, E. Alsberg, and D. J. Mooney, J. Biomed. Mater. Res., 56, 228 (2001)

    Article  CAS  Google Scholar 

  9. L.-S. Liu, S.-Q. Liu, S. Y. Ng, M. Froix, T. Ohno, and J. Heller, J. Control. Release, 43, 65 (1997)

    Article  CAS  Google Scholar 

  10. P. R. Hari, T. Chandy, and C. P. Sharma, J. Appl. Polym. Sci., 59, 1795 (1996)

    Article  CAS  Google Scholar 

  11. C. Lee, H Jeong, D. Kim, and K. Lee, Macromol. Res., 16, 429 (2008)

    CAS  Google Scholar 

  12. P. Prabu, K. W. Kim, N. Dharmaraj, J. H. Park, M. S. Khil, and H. Y. Kim, Macromol. Res., 16, 303 (2008)

    CAS  Google Scholar 

  13. H. Byun, B. Hong, S. Y. Nam, S. Y. Jung, J. W. Rhim, S. B. Lee, and G. Y. Moon, Macromol. Res., 16, 189 (2008)

    CAS  Google Scholar 

  14. H. J. Kong, D. Kaigler, K. Kim, and D. J. Mooney, Biomacromolecules, 5, 1720 (2004)

    Article  CAS  Google Scholar 

  15. T. Boontheekul, H. J. Kong, and D. J. Mooney, Biomaterials, 26, 2455 (2005)

    Article  CAS  Google Scholar 

  16. K. Lee and S. Lee, Macromol. Res., 16, 293 (2008)

    CAS  Google Scholar 

  17. P. De Vos, B. J. De Haan, G. H. Wolters, J. H. Strubbe, and R. V. Schilfgaarde, Diabetologia, 40, 262 (1997)

    Article  Google Scholar 

  18. C. M. Silva, A. J. Ribeiro, D. Ferreira, and F. Veiga, Eur. J. Pharm. Sci., 29, 148 (2006)

    Article  CAS  Google Scholar 

  19. S. Kim, S. Y. Chae, K. Na, S. W. Kim, and Y. H. Bae, Biomaterials, 24, 4843 (2003)

    Article  CAS  Google Scholar 

  20. K. G. Desai, C. Liu, and H. J. Park, J. Microencapsul., 23, 79 (2006)

    Article  CAS  Google Scholar 

  21. O. Gaserod, A. Sannes, and G. Skjak-Braek, Biomaterials, 20, 773 (1999)

    Article  CAS  Google Scholar 

  22. O. Gaserod, O. Smidsrod, and G. Skjak-Braek, Biomaterials, 19, 1815 (1998)

    Article  CAS  Google Scholar 

  23. M. Leonard, M. R. De Boisseson, P. Hubert, F. Dalencon, and E. Dellacherie, J. Control. Release, 98, 395 (2004)

    Article  CAS  Google Scholar 

  24. X. Z. Shu and K. J. Zhu, Eur. J. Pharm. Biopharm., 53, 193 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il Keun Kwon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, Y.S., Bae, M.S., Kim, S. et al. Mechanism of albumin release from alginate and chitosan beads fabricated in dual layers. Macromol. Res. 19, 476–482 (2011). https://doi.org/10.1007/s13233-011-0501-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0501-1

Keywords

Navigation