Skip to main content
Log in

Laplacian eigenvalues and eigenspaces of cographs generated by finite sequence

  • Original Research
  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider particular graphs defined by \(\overline{\overline{\overline{K_{\alpha _1}}\cup K_{\alpha _2}}\cup \cdots \cup K_{\alpha _k}}\), where k is even, \(K_\alpha \) is a complete graph on \(\alpha \) vertices, \(\cup \) stands for the disjoint union and an overline denotes the complementary graph. These graphs do not contain the 4-vertex path as an induced subgraph, i.e., they belong to the class of cographs. In addition, they are iteratively constructed from the generating sequence \((\alpha _1, \alpha _2, \ldots , \alpha _k)\). Our primary question is which invariants or graph properties can be deduced from a given sequence. In this context, we compute the Lapacian eigenvalues and the corresponding eigenspaces, and derive a lower and an upper bound for the number of distinct Laplacian eigenvalues. We also determine the graphs under consideration with a fixed number of vertices that either minimize or maximize the algebraic connectivity (that is the second smallest Laplacian eigenvalue). The clique number is computed in terms of a generating sequence and a relationship between it and the algebraic connectivity is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. T. Abrishami, A combinatorial analysis of the eigenvalues of the Laplacian matrices of cographs, Master thesis, Johns Hopkins University, 2019.

  2. C.O. Aguilar, M. Ficarra, N. Shurman, B. Sullivan, The role of anti-regular graph in the spectral analysis of threshold graphs, Linear Algebra Appl., 588 (2020) 210–223.

    Article  MathSciNet  Google Scholar 

  3. A. Alazemi, M. Anđelić, S.K. Simić, Eigenvalue location for chain graphs, Linear Algebra Appl., 505 (2016) 194–210.

    Article  MathSciNet  Google Scholar 

  4. L.E. Allem, F. Tura, Multiplicity of eigenvalues of cographs, Discrete Appl. Math., 247 (2018) 43–52.

    Article  MathSciNet  Google Scholar 

  5. L.E. Allem, F. Tura, Integral cographs, Discrete Appl. Math., 283 (2020) 153–167.

    Article  MathSciNet  Google Scholar 

  6. M. Anđelić, C.M. da Fonseca, T. Koledin, Z. Stanić, An extended eigenvalue-free interval for the eccentricity matrix of threshold graphs, J. Appl. Math. Comput., 69 (2023) 491–503.

    Article  MathSciNet  Google Scholar 

  7. R.B. Bapat, On the adjacency matrix of a threshold graph, Linear Algebra Appl., 439 (2013) 3008–3015.

    Article  MathSciNet  Google Scholar 

  8. T. Bĭyĭkoğlu, S.K. Simić, Z. Stanić, Some notes on spectra of cographs, Ars Combin., 100 (2011) 421–434.

    MathSciNet  Google Scholar 

  9. D.G. Corneil, H. Lerchs, L.S. Burlingham, Complement reducible graphs, Discrete Appl. Math., 3 (1981) 163–174.

    Article  MathSciNet  Google Scholar 

  10. K.C. Das, M. Liu, Complete split graph determined by its (signless) Laplacian spectrum, Discrete Appl. Math., 205 (2016) 45–51.

    Article  MathSciNet  Google Scholar 

  11. M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J., 23 (1973) 298–305.

    Article  MathSciNet  Google Scholar 

  12. C. Godsil, B. Rooney, Hardness of computing clique number and chromatic number for Cayley graphs, European J. Combin., 62 (2017) 147–166.

    Article  MathSciNet  Google Scholar 

  13. R. Grone, R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7 (1994) 221–229.

    Article  MathSciNet  Google Scholar 

  14. R. Grone, R. Merris, V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl., 11 (1990) 218–238.

    Article  MathSciNet  Google Scholar 

  15. F. Harary, The maximum connectivity of a graph, Proc. Nat. Acad. Sci. USA, 48 (1962) 1142–1146.

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  16. D.P. Jacobs, V. Trevisan, F. Tura, Eigenvalue location in cographs, Discrete Appl. Math., 245 (2018) 220–235.

    Article  MathSciNet  Google Scholar 

  17. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pp. 85–103, Plenum, New York, 1972.

  18. A.K. Kel’mans, The number of trees in a graph. I, Avtom. i Telemekhanika, 26 (1965) 2194–2204.

  19. S.J. Kirkland., J.J. Molitierno, M. Neumann, B.L. Shader, On graphs with equal algebraic and vertex connectivity, Linear Algebra Appl., 341 (2002) 45–56.

  20. J. Lazzarin, O.F. Sosa, F.C. Tura, Laplacian eigenvalues of equivalent cographs, Linear Multilinear Algebra, 71 (2023) 1003–1014.

    Article  MathSciNet  Google Scholar 

  21. C.L. de A.V.M. Lucas, R.R. Del-Vecchio, M.A.A. de Freitas, J.S. do Nascimento, Relationships between algebraic connectivity and vertex connectivity, Comput. Appl. Math. 41, (2022) article no: 105.

  22. S. Mandal, R. Mehatari, Spectral properties of a class of cographs, Preprint (2022), available at arXiv:2212.07319

  23. S Mandal, R Mehatari, K.C. Das, On the spectrum and energy of Seidel matrix for chain graphs, Preprint (2022), available at arXiv:2205.00310

  24. R. Merris, Laplacian graph eigenvectors, Linear Algebra Appl., 278 (1998) 221–236.

    Article  MathSciNet  Google Scholar 

  25. A. Mohammadian, V. Trevisan, Some spectral properties of cographs, Discrete Math., 339 (2016) 1261–1264.

    Article  MathSciNet  Google Scholar 

  26. A. Pêcher, A.K. Wagler, Computing the clique number of -perfect graphs in polynomial time, European J. Combin., 35 (2014) 449–458.

    Article  MathSciNet  Google Scholar 

  27. H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Arch. Math. Phys., 27 (1918) 742–744.

    Google Scholar 

  28. G.F. Royle, The rank of a cograph, Electron. J. Combin., 10 (2003) N11.

    Article  MathSciNet  Google Scholar 

  29. Z. Stanić, Inequalities for Graph Eigenvalues, Cambridge University Press, Cambridge, 2015.

    Book  Google Scholar 

Download references

Acknowledgements

The research of Santanu Mandal is supported by the University Grants Commission of India under the beneficiary code BININ01569755. This author also acknowledges the infrastructure provided by the VIT Bhopal University. The research of Zoran Stanić is supported by the Fund of the Republic of Serbia; grant number 7749676: Spectrally Constrained Signed Graphs with Applications in Coding Theory and Control Theory – SCSG-ctct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Mandal.

Ethics declarations

Conflicts of interest

The authors made no mention of any potential conflicts of interest.

Additional information

Communicated by S Sivaramakrishnan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Mehatari, R. & Stanić, Z. Laplacian eigenvalues and eigenspaces of cographs generated by finite sequence. Indian J Pure Appl Math (2024). https://doi.org/10.1007/s13226-024-00572-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13226-024-00572-w

Keywords

Mathematics Subject Classification

Navigation