Skip to main content
Log in

Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

The aim of this article is to study approximate controllability of a class of non-autonomous Sobolev type integro-differential equations having non-instantaneous impulses with nonlocal initial condition. The results will be proved with the help of evolution system and Krasnoselskii fixed point theorem. An example is presented to show how our abstract results can be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. M. Ahmed, Controllability for Sobolev type fractional integro-differential systems in a Banach space, Adv. Differences Equ., .2012(167) (2012), 1–10.

    MathSciNet  Google Scholar 

  2. D. D. Bainov, V. Lakshmikantham, and P. S. Simeonov, Theory Of Impulsive Differential Equations, Series in modern applied mathematics, World Scientific, Singapore (1989).

    Google Scholar 

  3. P. Balasubramaniam, V. Vembarasan, and T. Senthilkumar, Approximate controllability of impulsive fractional integro-differential systems with nonlocal conditions in Hilbert Space, Numer. Funct. Anal. Optim., 35(2) (2014), 177–197.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. I. Barenblatt, I. P. Zheltov and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286–1303.

    Article  MATH  Google Scholar 

  5. H. Brill, A semilinear Sobolev evolution equation in a Banach space, J. Differental Equations, 24 (1977), 412–425.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Byszewski, Theorem about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, J. Math. Anal. Appl., 162 (1991), 494–505.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Chadha and D. N. Pandey, Mild solutions for non-autonomous impulsive semi-linear differential equations with iterated deviating arguments, Electron. J. Differential Equations, 2015(222) (2015), 1–14.

    MathSciNet  MATH  Google Scholar 

  8. P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19(4) (1968), 614–627.

    Article  MATH  Google Scholar 

  9. P. Chen, X. Zhang, and Y. Li, Existence of mild solutions to partial differential equations with noninstantaneous impulses, Electron. J. Differential Equations, 2016(241) (2016), 1–11.

    Google Scholar 

  10. R. F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, New York (1995).

    Book  MATH  Google Scholar 

  11. F. Dong, C. Zhou and C. Kou, Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximate technique, Appl. Math. Comput., 275 (2016), 107–120.

    MathSciNet  MATH  Google Scholar 

  12. A. Friedman, Partial Differential Equations, Dover publication, New York (1997).

    Google Scholar 

  13. A. Granas and J. Dugundji, Fixed point theory, Springer-Verlag, New York (2003).

    Book  MATH  Google Scholar 

  14. R. Haloi, D. N. Pandey, and D. Bahuguna, Existence uniqueness ans asymptotic stability of solutions to non-autonomous semi-linear differential equations with deviated arguments, Nonlinear Dyn. Syst. Theory, 12(2) (2012), 179–191.

    MathSciNet  MATH  Google Scholar 

  15. R. Haloi, Approximate controllability of non-autonomous nonlocal delay differential equations with deviating arguments, Electron. J. Differential Equations, 2017(111) (2017), 1–12.

    MathSciNet  MATH  Google Scholar 

  16. E. Hernández and D. O’Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141(5) (2013), 1641–1649.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. R. Huilgol, A second order fluid of the differential type, Internat. J. Non-Linear Mech., 3(4) (1968), 471–482.

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Kumar, R. Haloi, D. Bahuguna, and D. N. Pandey, Existence of solutions to a new class of abstract non-instantaneous impulsive fractional integro-differential equations, Nonlinear Dyn. Syst. Theory, 16 (2016), 73–85.

    MathSciNet  MATH  Google Scholar 

  19. K. Kumar and R. Kumar, Controllability of Sobolev type nonlocal impulsive mixed functional integrodifferential evolution systems, Electron. J. Math. Anal. Appl., 3(1) (2015), 122–132.

    MathSciNet  MATH  Google Scholar 

  20. P. Kumar, D. N. Pandey, and D. Bahuguna, On a new class of abstract impulsive functional differential equations of fractional order, J. Nonlinear Sci. Appl., 7 (2014), 102–114.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. H. Lightbourne and S. M. Rankin, A partial differential equation of Sobolev type, J. Math. Anal. Appl., 93 (1983), 328–337.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. I. Mahmudov, Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces, SIAM J. Control. Optim., 42(5) (2003), 1604–1622.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. I. Mahmudov, Approximate controllability of fractional Sobolev type evolution equations in Banach space, Abstr. Appl. Anal., (2013). https://doi.org/10.1155/2013/502839.

    Google Scholar 

  24. N. I. Mahmudov and S. Zorlu, On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comput. Appl. Math., 259 (2014), 194–204.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Pazy, Semigroup of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Springer-Verlag, New York (1983).

    Google Scholar 

  26. M. Pierri, D. O’Regan, and V. Rolnik, Existence of solutions for semi-linear abstract differential equations with non instantaneous impulses, Appl. Math. Comput., 219 (2013), 6743–6749.

    MathSciNet  MATH  Google Scholar 

  27. B. Radhakrishnan and P. Anukokila, Controllability of second order Sobolev type neutral impulsive integro-differential systems in Banach space, Electron. J. Differential Equations, 2016(259) (2016), 1–18.

    Google Scholar 

  28. R. Shaktivel, Y. Ren, and N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Comput. Math. Appl., 62 (2011), 1451–1459.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Taylor, Research on consolidation of clays, Massachusetts institute of technology press, Cambridge (1952).

    Google Scholar 

  30. Z. Yan, On solutions of semilinear evolution integro-differential equations with nonlocal conditions, Tamkang J. Math., 40(3) (2009), 257–269.

    Article  MathSciNet  MATH  Google Scholar 

  31. X. Zhang, C. Zhu, and C. Yuan, Approximate controllability of fractional impulsive evolution systems involving nonlocal initial conditions, Adv. Difference Equ., 2015(244) (2015), 1–14.

    MathSciNet  Google Scholar 

Download references

Acknowledgement

The work of first author is supported by Ministry of Human Resource Development, India with grant code MHR-01-23-200-428.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arshi Meraj or Dwijendra N. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraj, A., Pandey, D.N. Approximate controllability of non-autonomous Sobolev type integro-differential equations having nonlocal and non-instantaneous impulsive conditions. Indian J Pure Appl Math 51, 501–518 (2020). https://doi.org/10.1007/s13226-020-0413-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-020-0413-9

Key words

2010 Mathematics Subject Classification

Navigation