Skip to main content
Log in

Effect of a Floating Elastic Plate/Membrane on the Motion Due to a Ring Source in Water With Porous Bed

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

The velocity potentials due to the presence of a horizontal circular ring of wave sources of timedependent strength in water of finite constant depth with a floating elastic plate or a floating membrane are determined. The uniform bottom is composed of non-dissipative porous medium. The problems are formulated as the initial value problems and the Laplace transform method is used to solve these. For time-harmonic source strength, the steady-state analysis of the potentials reveals the existence of outgoing progressive waves. Graphs for the surface profiles are presented for different values of the tension parameter for the membrane, flexural rigidity of ice and the porous-effect parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Banerjea, P. Rakshit and P. Maiti, On the waves generated due to a line source present in an ocean with an ice cover and a small bottom undulation, Fluid Dyn. Res., 43 (2011), 025506.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Chakrabarti, On the solution of the problem of scattering of surface water waves by the edge of an ice cover, Proc. Roy. Soc. London A., 456 (2000), 1087–1099.

    Article  MathSciNet  MATH  Google Scholar 

  3. I. H. Cho and M. H. Kim, Interactions of a horizontal flexible membrane with oblique incident waves, J. Fluid Mech., 367 (1998), 139–161.

    Article  MATH  Google Scholar 

  4. R. G. Chowdhury and B. N. Mandal, Motion due to ring source in ice-covered water, Int. J. Eng. Sci., 42 (2004), 1645–1654.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. G. Chowdhury and B. N. Mandal, Motion due to fundamental singularities in finite depth water with an elastic solid cover, Fluid Dyn. Res., 38 (2006), 224–240.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. T. Chwang and A. T. Chan, Interaction between porous media and wave motion, Annu. Rev. Fluid Mech., 30 (1998), 53–84.

    Article  MathSciNet  Google Scholar 

  7. S. Das, H. Behera and T. Sahoo, Flexural gravity wave motion over poroelastic bed, Wave Motion, 63 (2016), 135–148.

    Article  MathSciNet  Google Scholar 

  8. S. Das and T. Sahoo, Hydroelastic analysis of very large floating structure over viscoelastic bed, Meccanica, 52 (2017), 1871–1887.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Gayen and B. N. Mandal, Scattering of surface water waves by a floating elastic plate in two dimensions, SIAM J. Appl. Math., 69 (2009), 1520–1541.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. K. Ghosh, A cylindrical wave-maker problem in a liquid of finite depth with an inertial surface in the presence of surface tension, ANZIAM J., 33 (1991), 111–121.

    MathSciNet  MATH  Google Scholar 

  11. A. Hulme, The potential of a horizontal ring of wave sources in a fluid with a free surface, Proc. Roy. Soc. London A., 375 (1981), 95–306.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. S. Jeng, Wave dispersion equation in a porous seabed, Ocean Eng., 28 (2001), 1585–1599.

    Article  Google Scholar 

  13. M. Kashiwagi, Research on hydroelastic responses of VLFS: recent progress and future work, IJOPE, 10 (2000).

  14. A. A. Korobkin, T. I. Khabakhpasheva and A. A. Papin, Waves propagating along a channel with ice cover, Eur. J. Mech. B Fluids, 47 (2014), 166–175.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Q. Lu, J. C. Le and S. Q. Dai, Unsteady waves due to oscillating disturbances in an ice-covered fluid, J. Hydrodyn. Ser. B, 18 (2006), 177–180.

    Article  Google Scholar 

  16. D. Q. Lu and S. Q. Dai, Generation of unsteady waves by concentrated disturbances in an inviscid fluid with an inertial surface, Acta Mech. Sin., 24 (2008), 267–275.

    Article  MATH  Google Scholar 

  17. P. Maiti and B. N. Mandal, Water wave scattering by an elastic plate floating in an ocean with a porous bed, Appl. Ocean Res., 47 (2014), 73–84.

    Article  Google Scholar 

  18. P. Maiti, P. Rakshit and S. Banerjea, Wave motion in an ice covered ocean due to small oscillations of a submerged thin vertical plate, J. Marine Sci. Appl., 14 (2015), 355–365.

    Article  Google Scholar 

  19. S. R. Manam, Scattering of membrane coupled gravity waves by partial vertical barriers, ANZIAM J., 51 (2009), 241–260.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. N. Mandal and K. Kundu, Ring source potentials in a fluid with an inertial surface in the presence of surface tension, Int. J. Eng. Sci., 25 (1987), 1383–1386.

    Article  MATH  Google Scholar 

  21. S. C. Martha, S. N. Bora and A. Chakrabarti, Oblique water-wave scattering by small undulation on a porous sea-bed, Appl. Ocean Res., 29 (2007), 86–90.

    Article  Google Scholar 

  22. P. McIver and M. McIver, Trapped modes in an axisymmetric water-wave problem, Q. J. Mech. Appl. Math., 50 (1997), 165–178.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Mirafzali, A. Tavakoli and M. Mollazadeh, Hydroelastic analysis of fully nonlinear water waves with floating elastic plate via multiple knot B-splines, Appl. Ocean Res., 51 (2015), 171–180.

    Article  Google Scholar 

  24. S. K. Mohanty, R. Mondal and T. Sahoo, Time dependent flexural gravity waves in the presence of current, J. Fluid Struct., 45 (2014), 28–49.

    Article  Google Scholar 

  25. S. C. Mohapatra, D. Karmakar and T. Sahoo, On capillary gravity-wave motion in two-layer fluids, J. Eng. Math., 71 (2011), 253–277.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. C. Mohapatra and T. Sahoo, Wave interaction with a floating and submerged elastic plate system, J. Eng. Math., 87 (2014), 47–71.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Mohapatra, Scattering of oblique surface waves by the edge of small deformation on a porous ocean bed, J. Marine Sci. Appl., 14 (2015), 156–162.

    Article  Google Scholar 

  28. S. Panda and S. C. Martha, Oblique wave scattering by undulating porous bottom in a two-layer fluid: Fourier transform approach, Geophys. Astrophys. Fluid Dyn., 108 (2014), 587–614.

    Article  MathSciNet  Google Scholar 

  29. P. F. Rhodes-Robinson, On the generation of water waves at an inertial surface, ANZIAM J., 25 (1984), 366–383.

    MathSciNet  MATH  Google Scholar 

  30. A. A. Savin and A. S. Savin, Waves generated on an ice cover by a source pulsating in fluid, Fluid Dyn., 48 (2013), 303–309.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. H. Sherief, M. S. Faltas and E. I. Saad, Axisymmetric gravity waves in two-layered fluids with the upper fluid having a free surface, Wave motion., 40 (2004), 143–161.

    Article  MathSciNet  MATH  Google Scholar 

  32. V. A. Squire, Of ocean waves and sea-ice revisited, Cold Reg. Sci. Technol., 49 (2007), 110–133.

    Article  Google Scholar 

  33. B. Teng and S. Kato, A method for second-order diffraction potential from an axisymmetric body, Ocean Eng., 26 (1999), 1359–1387.

    Article  Google Scholar 

  34. E. Watanabe, T. Utsunomiya and C. M. Wang, Hydroelastic analysis of pontoon-type VLFS: a literature survey, Eng. Struct., 26 (2004), 245–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gayen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayen, R., Islam, N. Effect of a Floating Elastic Plate/Membrane on the Motion Due to a Ring Source in Water With Porous Bed. Indian J Pure Appl Math 49, 239–256 (2018). https://doi.org/10.1007/s13226-018-0266-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-018-0266-7

Key words

Navigation