Skip to main content
Log in

Matrix polynomial generalizations of the sample variance-covariance matrix when pn−1y ∈ (0, ∞)

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 29 November 2018

This article has been updated

Abstract

Let {Z u = ((εu, i, j))p×n} be random matrices where {εu, i, j} are independently distributed. Suppose {A i }, {B i } are non-random matrices of order p × p and n × n respectively. Consider all p × p random matrix polynomials \(P = \prod\nolimits_{i = 1}^{k_l } {\left( {n^{ - 1} A_{t_i } Z_{j_i } B_{s_i } Z_{j_i }^* } \right)A_{t_{k_l + 1} } }\). We show that under appropriate conditions on the above matrices, the elements of the non-commutative *-probability space Span {P} with state p−1ETr converge. As a by-product, we also show that the limiting spectral distribution of any self-adjoint polynomial in Span{P} exists almost surely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 29 November 2018

    Corrections to Matrix polynomial generalizations of the sample variance-covariance matrix when pn1 ? y ? (0; ?), Indian Journal of Pure and Applied Mathematics, 48(4) (2017), 575?607 by Monika Bhattacharjee and Arup Bose.

References

  1. G. Anderson, A. Guionnet and O. Zeitouni, An Introduction to random matrices, Cambridge University Press, Cambridge, UK, 2009.

    Book  MATH  Google Scholar 

  2. Z. D. Bai and J. W. Silverstein, Spectral analysis of large dimensional random matrices, Springer, 2010.

    Book  MATH  Google Scholar 

  3. Z. D. Bai and L. X. Zhang, The limiting spectral distribution of the product of the Wigner matrix and a nonnegative definite matrix, J. Mult. Anal., 101(9) (2010), 1927–1949.

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Benaych-Georges, Rectangular random matrices, related convolution, Probab. Theory Related Fields, 144(3–4) (2009), 471–515.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Benaych-Georges, On a surprising relation between the Marčenko-Pastur law, rectangular and square free convolutions, Ann. de I’institut Henri Poincaré (B), 46(3) (2010), 644–652.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Benaych-Georges and R. R. Nadakuditi, The singular values and vectors of low rank perturbations of large rectangular random matrices, J. Mult. Anal., 111 (2012), 120–135.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bhattacharjee and A. Bose, Large sample behaviour of high dimensional autocovariance matrices, Ann. Statist., 44(2) (2016a), 598–628.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Bhattacharjee and A. Bose, Joint convergence of sample autocovariance matrices when p/n → 0 with application, Submitted for publication, 2016b.

    Google Scholar 

  9. A. Bose, R. Subhra Hazra and K. Saha, Patterned random matrices and method of moments, Proceedings of the International Congress of Mathematicians, Hyderabad, India, World Scientific, Singapore and Imperial College Press, UK: 2203–2230, 2010.

    Google Scholar 

  10. R. Couillet and M. Debbah, Random matrix methods for wireless communications, Cambridge University Press, Cambridge, UK, 2011.

    Book  MATH  Google Scholar 

  11. B. Jin, C. Wang, Z. D. Bai, K. K. Nair and M. Harding, Limiting spectral distribution of a symmetrized auto-cross covariance matrix, Ann. Appl. Probab., 24(3) (2014), 1199–1225.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Liu, A. Aue and D. Paul, On the Marčenko-Pastur law for linear time series, Ann. Statist., 43(2) (2015), 675–712.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Marčenko and L. Pastur, Distribution of eigenvalues for some sets of random matrices, Mathematics of the USSR-Sbornik, 1 (1967), 457–483.

    Article  Google Scholar 

  14. A. Nica and R. Speicher, Lectures on the combinatorics of free probability, Cambridge University Press, Cambridge, UK, 2006.

    Book  MATH  Google Scholar 

  15. O. Pfaffel and E. Schlemm, Eigenvalue distribution of large sample covariance matrices of linear processes, Probab. Math. Statist., 31(2) (2011), 313–329.

    MathSciNet  MATH  Google Scholar 

  16. R. Speicher and C. Vargas, Free deterministic equivalents, rectangular random matrix models, and operator-valued free probability theory, Random Matrices: Theory and Applications, 1(02) (2012), 1150008.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Yao, A note on a Marčenko-Pastur type theorem for time series, Statit. Probab. Lett., 82 (2012), 22–28, doi: 10.1006/jmva.1995.1083.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Bhattacharjee.

Additional information

Dedicated to Professor B. V. Rao

Currently at Informatics Institute, University of Florida, Gainesville, USA.

Research supported by J. C. Bose National Fellowship, Department of Science and Technology, Govt. of India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, M., Bose, A. Matrix polynomial generalizations of the sample variance-covariance matrix when pn−1y ∈ (0, ∞). Indian J Pure Appl Math 48, 575–607 (2017). https://doi.org/10.1007/s13226-017-0247-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-017-0247-2

Key words

Navigation