Skip to main content
Log in

Spatial Cognition of Humans and Brain-inspired Artificial Agents

  • Research Project
  • Published:
KI - Künstliche Intelligenz Aims and scope Submit manuscript

Abstract

Present vision systems primarily operate on still images or an image sequence but hardly consider continuous perception across actions. If sensors are attached to the body of a human-like agent who interacts with the environment, several questions arise about how to update the reference systems with each action. In our European research project “Spatial Cognition” we address this topic by a combination of experimental and computational work which should finally merge into a large-scale model of human-like space perception and spatial memory being tested on a humanoid agent in virtual reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125150

    Article  Google Scholar 

  2. Busch NA, VanRullen R (2010) Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc Natl Acad Sci USA 107:16048–16053

    Article  Google Scholar 

  3. Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114:340–375

    Article  Google Scholar 

  4. Cavanagh P, Hunt AR, Afraz A, Rolfs M (2010) Visual stability based on remapping of attention pointers. Trends Cogn Sci 14:147–153

    Article  Google Scholar 

  5. Golomb JD, Chun MM, Mazer JA (2008) The native coordinate system of spatial attention is retinotopic. J Neurosci 28:10654–10662

    Article  Google Scholar 

  6. Golomb JD, Pulido VZ, Albrecht AR, Chun MM, Mazer JA (2010) Robustness of the retinotopic attentional trace after eye movements. J Vis 10:19.1–19.12

    Article  Google Scholar 

  7. Hamker FH, Zirnsak M, Ziesche A, Lappe M (2011) Computational models of spatial updating in peri-saccadic perception. Phil Trans R Soc B 366:554–571

    Article  Google Scholar 

  8. Mack A, Rock I (1998) Inattentional blindness. MIT Press, Cambridge

    Google Scholar 

  9. Medendorp WP (2011) Spatial constancy mechanisms in motor control. Phil Trans R Soc B 366:476–491

    Article  Google Scholar 

  10. Melcher D, Colby CL (2008) Trans-saccadic perception. Trends Cogn Sci 12:466–473

    Article  Google Scholar 

  11. Pouget A, Deneve S, Duhamel J-R (2002) A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci 3:741–747

    Article  Google Scholar 

  12. Rolfs M, Jonikaitis D, Deubel H, Cavanagh P (2011) Predictive remapping of attention across eye movements. Nat Neurosci 14:252–256

    Article  Google Scholar 

  13. Salinas E, Sejnowski TJ (2001) Gain modulation in the central nervous system: where behavior, neurophysiology, and computation meet. Neuroscientist 7:430–440

    Article  Google Scholar 

  14. Simons DJ, Rensink RA (2005) Change blindness: past, present, and future. Trends Cogn Sci 9:16–20

    Article  Google Scholar 

  15. VanRullen R, Carlson T, Cavanagh P (2007) The blinking spotlight of attention. Proc Natl Acad Sci USA 104:19204–19209

    Article  Google Scholar 

  16. Wurtz RH (2008) Neuronal mechanisms of visual stability. Vis Res 48:2070–2089

    Article  Google Scholar 

  17. Ziesche A, Hamker FH (2011) A computational model for the influence of corollary discharge and proprioception on the perisaccadic mislocalization of briefly presented stimuli in complete darkness. J Neurosci 31:17392–17405

    Article  Google Scholar 

  18. Ziesche A, Hamker FH (2014) Brain circuits underlying visual stability across eye movements—converging evidence for a neuro-computational model of area LIP. Front Comput Neurosci 8(25):1–15

    Google Scholar 

Download references

Acknowledgments

This project report provides an overview of the EU research project “Spatial Cognition”. Special thanks is given to the further PI’s of the project Neil Burges, Rufin VanRullen, Pieter Medendorp and Patrick Cavanagh who supported this report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Hamker.

Additional information

This work has been supported by the European Project FP7-NBIS Spatial Cognition “(Grant No. 600785)” and the DFG funded Grossgerät “Mehrbenutzerfähiges Virtual Reality System für kognitive Agenten”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamker, F. Spatial Cognition of Humans and Brain-inspired Artificial Agents. Künstl Intell 29, 83–88 (2015). https://doi.org/10.1007/s13218-014-0338-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13218-014-0338-8

Keywords

Navigation