Skip to main content
Log in

Accumulation of conjugated linoleic acid in Lactobacillus plantarum WU-P19 is enhanced by induction with linoleic acid and chitosan treatment

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Production of conjugated linoleic acid (CLA) by the potential probiotic bacterium Lactobacillus plantarum WU-P19 was investigated with the aim of enhancing production. CLA produced using this bacterium may be used to supplement dietary intake. Cultures were fed linoleic acid for conversion to CLA and the CLA produced was measured. In some cases, chitosan was added to cultures to improve cellular uptake of linoleic acid. Under static conditions at 37 °C, the bacterium grew and produced CLA in the pH range of 5.5–6.5. At pH 6.0, a 36-h incubation period maximized the concentration of the dry biomass (0.82 g/L), the CLA content in the biomass (4.1 mg/g), and linoleic acid in the biomass (1.2 mg/g). In comparison with cultures grown without linoleic acid in the medium, supplementing the medium with linoleic acid at 600 μg/mL slowed the production of CLA, but the CLA content in the dry biomass increased to 12–14 mg/g and the linoleic acid content increased to 8–11 mg/g. Supplementing the culture medium with chitosan and linoleic acid enhanced production of CLA in the dry biomass to 21 mg/g within 36 h. Nearly 50% of the CLA was cis-9, trans-11-CLA, and the remainder was trans-10, cis-12-CLA. Linoleic acid content of the dry biomass was increased to 37 mg/g. Accumulation of CLA in the cells was enhanced by feeding linoleic acid. Supplementing the culture with linoleic acid and chitosan further increased accumulation of CLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ai Z, Lv X, Huang S, Liu G, Sun X, Chen H et al (2017) The effect of controlled and uncontrolled pH cultures on the growth of Lactobacillus delbrueckii subsp bulgaricus. LWT-Food Sci Technol 77:269–275

    Article  CAS  Google Scholar 

  • Ando A, Ogawa J, Kishino S, Shimizu S (2004) Conjugated linoleic acid production from castor oil by Lactobacillus plantarum JCM 1551. Enzym Microb Technol 35:40–45

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Castro-Webb N, Ruiz-Narváez EA, Campos H (2012) Cross-sectional study of conjugated linoleic acid in adipose tissue and risk of diabetes. Am J Clin Nutr 96:175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung SH, Kim IH, Park HG, Kang HS, Yoon CS et al (2008) Synthesis of conjugated linoleic acid by human-derived Bifidobacterium breve LMC 017: utilization as a functional starter culture for milk fermentation. J Agric Food Chem 56:3311–3316

    Article  CAS  PubMed  Google Scholar 

  • Cui S, Zhao J, Liu X, Chen YQ, Zhang H, Chen W (2016) Maximum-biomass prediction of homofermentative Lactobacillus. J Biosci Bioeng 122:52–57

    Article  CAS  PubMed  Google Scholar 

  • Dahiya DK, Puniya AK (2018) Optimisation of fermentation variables for conjugated linoleic acid bioconversion by Lactobacillus fermentum DDHI27 in modified skim milk. Int J Dairy Technol 71:46–55

    Article  CAS  Google Scholar 

  • EFSA (2010) Scientific opinion on the safety of “conjugated linoleic acid (CLA)-rich oil” (Clarinol®) as a novel food ingredient. EFSA J 8:1601

    Article  CAS  Google Scholar 

  • Ferlay A, Bernard L, Meynadier A, Malpuech-Brugère C (2017) Production of trans and conjugated fatty acids in dairy ruminants and their putative effects on human health: a review. Biochimie 141:107–120

    Article  CAS  PubMed  Google Scholar 

  • Gaullier JM, Halse J, Hoivik HO, Hoye K, Syvertsen C et al (2007) Six months supplementation with conjugated linoleic acid induces regional-specific fat mass decreases in overweight and obese. Brit J Nutr 97:550–560

    Article  CAS  PubMed  Google Scholar 

  • Giraud E, Lelong B, Raimbault M (1991) Influence of pH and initial lactate concentration on the growth of Lactobacillus plantarum. Appl Microbiol Biotechnol 36:96–99

    Article  CAS  Google Scholar 

  • Gonçalves LMD, Ramos A, Almeida JS, Xavier AMRB, Carrondo MJT (1997) Elucidation of the mechanism of lactic acid growth inhibition and production in batch cultures of Lactobacillus rhamnosus. Appl Microbiol Biotechnol 48:346–350

    Article  Google Scholar 

  • Gorissen L, Weckx S, Vlaeminck B, Raes K, De Vuyst L et al (2011) Linoleate isomerase activity occurs in lactic acid bacteria strains and is affected by pH and temperature. J Appl Microbiol 111:593–606

    Article  CAS  PubMed  Google Scholar 

  • Guan N, Liu L, Shin HD, Chen RR, Zhang J, Li J et al (2013) Systems-level understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the microenvironment levels: mechanism and application. J Biotechnol 167:56–63

    Article  CAS  PubMed  Google Scholar 

  • Gurovic MSV, Gentili AR, Olivera NL, Rodríguez MS (2014) Lactic acid bacteria isolated from fish gut produce conjugated linoleic acid without the addition of exogenous substrate. Process Biochem 49:1071–1077

    Article  CAS  Google Scholar 

  • Hosseini ES, Kermanshahi RK, Hosseinkhani S, Shojaosadati SA, Nazari M (2015) Conjugated linoleic acid production from various substrates by probiotic Lactobacillus plantarum. Ann Microbiol 65:27–32

    Article  CAS  Google Scholar 

  • Hosseinnejad M, Jafari SM (2016) Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol 85:467–475

    Article  CAS  PubMed  Google Scholar 

  • Igarashi M, Miyazawa T (2001) The growth inhibitory effect of conjugated linoleic acid on a human hepatoma cell line, HepG2, is induced by a change in fatty acid metabolism, but not the facilitation of lipid peroxidation in the cells. BBA-Mol Cell Biol L 1530:162–171

    Article  CAS  Google Scholar 

  • Jeon SJ, Oh M, Yeo W-S, Galvao KN, Jeong KC (2014) Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS One 9:e92723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Björck L, Fonden R (1998) Production of conjugated linoleic acid by dairy starter cultures. J Appl Microbiol 85:95–102

    Article  CAS  PubMed  Google Scholar 

  • Kankaanpää PE, Salminen SJ, Isolauri E, Lee YK (2001) The influence of polyunsaturated fatty acids on probiotic growth and adhesion. FEMS Microbiol Lett 194:149–153

    Article  PubMed  Google Scholar 

  • Kelley NS, Hubbard NE, Erickson KL (2007) Conjugated linoleic acid isomers and cancer. J Nutr 137:2599–2607

    Article  CAS  PubMed  Google Scholar 

  • Khaskheli AA, Talpur FN, Demir AS, Cebeci A, Jawaid S (2013) A highly selective whole cell biocatalysis method for the production of two major bioactive conjugated linoleic acid isomers. Biocatal Agric Biotechnol 2:328–332

    Google Scholar 

  • Khosravi A, Safari M, Khodaiyan F, Gharibzahedi SMT (2015) Bioconversion enhancement of conjugated linoleic acid by Lactobacillus plantarum using the culture media manipulation and numerical optimization. J Food Sci Technol 52:5781–5789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Kim Y, Kim YJ, Park Y (2016) Conjugated linoleic acid: potential health benefits as a functional food ingredient. Ann Rev Food Sci Technol 7:221–244

    Article  CAS  Google Scholar 

  • Kishino S, Ogawa J, Omura Y, Matsumura K, Shimizu S (2002) Conjugated linoleic acid production from linoleic acid by lactic acid bacteria. J Am Oil Chem Soc 79:159–163

    Article  CAS  Google Scholar 

  • Kishino S, Park S-B, Takeuchi M, Yokozeki K, Shimizu S, Ogawa J (2011a) Novel multi-component enzyme machinery in lactic acid bacteria catalyzing C=C double bond migration useful for conjugated fatty acid synthesis. Biochem Biophys Res Co 416:188–193

    Article  CAS  Google Scholar 

  • Kishino S, Ogawa J, Yokozeki K, Shimizu S (2011b) Linoleic acid isomerase in Lactobacillus plantarum AKU1009a proved to be a multi-component enzyme system requiring oxidoreduction cofactors. Biosci Biotechnol Biochem 75:318–322

    Article  CAS  PubMed  Google Scholar 

  • Kishino S, Takeuchi M, Park S-B, Hirata A, Kitamura N, Kunisawa J et al (2013) Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl Acad Sci U S A 110:17808–17813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  • Lee Y (2013) Effect of pH on conjugated linoleic acid (CLA) formation of linolenic acid biohydrogenation by ruminal microorganisms. J Microbiol 51:471–476

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang L, Han X, Yi H, Guo C, Zhang Y et al (2013) Effect of incubation conditions and possible intestinal nutrients on cis-9, trans-11 conjugated linoleic acid production by Lactobacillus acidophilus F0221. Int Dairy J 29:93–98

    Article  CAS  Google Scholar 

  • Liu P, Shen SR, Ruan H, Zhou Q, Ma LL, He GQ (2011) Production of conjugated linoleic acids by Lactobacillus plantarum strains isolated from naturally fermented Chinese pickles. J Zhejiang Univ Sc B 12(11):923–930

    Article  CAS  Google Scholar 

  • Liu X, Xia W, Jiang Q, Xu Y, Yu P (2015) Effect of kojic acid-grafted-chitosan oligosaccharides as a novel antibacterial agent on cell membrane of gram-positive and gram-negative bacteria. J Biosci Bioeng 120:335–339

    Article  CAS  PubMed  Google Scholar 

  • Macouzet M, Lee B, Robert N (2009) Production of conjugated linoleic acid by probiotic Lactobacillus acidophilus La-5. J Appl Microbiol 106:1886–1891

    Article  CAS  PubMed  Google Scholar 

  • Maia MR, Chaudhary LC, Bestwick CS, Richardson AJ, McKain N, Larson TR et al (2010) Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol 10:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGowan MM, Eisenberg BL, Lewis LD, Froehlich HM, Wells WA, Eastman A et al (2013) A proof of principle clinical trial to determine whether conjugated linoleic acid modulates the lipogenic pathway in human breast cancer tissue. Breast Cancer Res Tr 138:175–183

    Article  CAS  Google Scholar 

  • Mushtaq S, Mangiapane EH, Hunter KA (2010) Estimation of cis-9, trans-11 conjugated linoleic acid content in UK foods and assessment of dietary intake in a cohort of healthy adults. Brit J Nutr 103:1366–1374

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Anaya J, Hernández-Santoyo A (2016) Production of bioactive conjugated linoleic acid by the multifunctional enolase from Lactobacillus plantarum. Int J Biol Macromol 91:524–535

    Article  CAS  PubMed  Google Scholar 

  • Özer CO, Kılıç B, Kılıç GB (2016) In-vitro microbial production of conjugated linoleic acid by probiotic L. plantarum strains: utilization as a functional starter culture in sucuk fermentation. Meat Sci 114:24–31

    Article  CAS  PubMed  Google Scholar 

  • Palachum W, Chisti Y, Choorit W (2018) In-vitro assessment of probiotic potential of Lactobacillus plantarum WU-P19 isolated from a traditional fermented herb. Ann Microbiol 68:79–91

    Article  CAS  Google Scholar 

  • Panghyová E, Kačenová D, Hajdušková S, Matulová M, Kiss E (2006) Influence of free linoleic acid on the fatty acids profile of fermentation by selected probiotic bacteria. J Food Nutr Res 45:159–165

    Google Scholar 

  • Panghyová E, Kačenová D, Matulová M, Kiss E (2009) Composition of conjugated linoleic acid isomers formed by Lactobacillus and Bifidobacterium spp in conversion media. J Food Nutr Res 48:163–170

    Google Scholar 

  • Penedo LA, Nunes JC, Gama MAS, Leite PEC, Quirico-Santos TF, Torres AG (2013) Intake of butter naturally enriched with cis9, trans11 conjugated linoleic acid reduces systemic inflammatory mediators in healthy young adults. J Nutr Biochem 24:2144–2151

    Article  CAS  PubMed  Google Scholar 

  • Pieterse B, Leer RJ, Schuren FHJ, van der Werf MJ (2005) Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:3881–3894

    Article  CAS  PubMed  Google Scholar 

  • Raafat D, von Bargen K, Haas A, Sahl H-G (2008) Insight into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rainio A, Vahvaselkä M, Suomalainen T, Laakso S (2001) Reduction of linoleic acid inhibition in production of conjugated linoleic acid by Propionibacterium freudenreichii ssp shermanii. Can J Microbiol 47:735–740

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Alcalá LM, Braga T, Malcata FX, Gomes A, Fontecha J (2011) Quantitative and qualitative determination of CLA produced by Bifidobacterium and lactic acid bacteria by combining spectrophotometric and Ag+-HPLC techniques. Food Chem 125:1373–1378

    Article  CAS  Google Scholar 

  • Sharma S (2017) Enhanced antibacterial efficacy of silver nanoparticles immobilized in a chitosan nanocarrier. Int J Biol Macromol 104:1740–1745

    Article  CAS  PubMed  Google Scholar 

  • Sieber R, Collomb M, Aeschlimann A, Jelen P, Eyer H (2004) Impact of microbial cultures on conjugated linoleic acid in dairy products—a review. Int Dairy J 14:1–15

    Article  CAS  Google Scholar 

  • Soto C (2013) Lactobacillus plantarum as source of conjugated linoleic acid: effect of pH, incubation temperature and inulin incorporation. J Biochem Technol 5:649–653

    CAS  Google Scholar 

  • Stachowska E, Siennicka A, Baśkiewcz-Hałasa M, Bober J, Machalinski B, Chlubek D (2012) Conjugated linoleic acid isomers may diminish human macrophages adhesion to endothelial surface. Int J Food Sci Nutr 63:30–35

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi M, Kishino S, Hirata A, Park SB, Kitamura N, Ogawa J (2015) Characterization of the linoleic acid Δ9 hydratase catalyzing the first step of polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarum AKU 1009a. J Biosci Bioeng 119:636–641

    Article  CAS  PubMed  Google Scholar 

  • Troegeler-Meynadier A, Bret-Bennis L, Enjalbert F (2006) Rates and efficiencies of reactions of ruminal biohydrogenation of linoleic acid according to pH and polyunsaturated fatty acids concentrations. Reprod Nutr Dev 46:713–724

    Article  CAS  PubMed  Google Scholar 

  • Van Nieuwenhove C, Oliszewski R, González S, Perez Chaia A (2007) Conjugated linoleic acid conversion by dairy bacteria cultured in MRS broth and buffalo milk. Lett Appl Microbiol 44:467–474

    Article  CAS  PubMed  Google Scholar 

  • Wei M, Ding XL, Xue ZL, Zhao SG (2014) Production of conjugated linoleic acid by permeabilized Lactobacillus acidophilus cells. J Mol Cat B 108:59–63

    Article  CAS  Google Scholar 

  • Yang B, Chen H, Stanton C, Ross RP, Zhang H, Chen YQ, Chen W (2015) Review of the roles of conjugated linoleic acid in health and disease. J Funct Foods 15:314–325

    Article  CAS  Google Scholar 

  • Yang B, Gao H, Stanton C, Paul Ross R, Zhang H, Chen YQ, Chen H, Chen W (2017) Bacterial conjugated linoleic acid production and their applications. Prog Lipid Res 68:26–36

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Chen Z (1997) Oxidative stability of conjugated linoleic acids relative to other polyunsaturated fatty acids. J Am Oil Chem Soc 74:1611–1613

    Article  CAS  Google Scholar 

  • Zhao HW, Lv JP, Li SR (2011) Production of conjugated linoleic acid by whole-cell of Lactobacillus plantarum A6-1F. Biotechnol Biotech Eq 25(1):2266–2272

    Article  CAS  Google Scholar 

  • Zotta T, Guidone A, Ianniello R, Parente E, Ricciardi A (2013) Temperature and respiration affect the growth and stress resistance of Lactobacillus plantarum C17. J Appl Microbiol 115:848–858

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Royal Golden Jubilee (RGJ) PhD Program (PHD/0258/2553 code 6.Q.WL/53/A.1) and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission.

Funding

This study was funded by the Office of the Higher Education Commission, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanna Choorit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Informed consent

Not applicable. (No human participants.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palachum, W., Choorit, W. & Chisti, Y. Accumulation of conjugated linoleic acid in Lactobacillus plantarum WU-P19 is enhanced by induction with linoleic acid and chitosan treatment. Ann Microbiol 68, 611–624 (2018). https://doi.org/10.1007/s13213-018-1368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1368-5

Keywords

Navigation