Skip to main content
Log in

Characterization of fructophilic lactic microbiota of Apis mellifera from the Caucasus Mountains

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Microbial symbionts of honeybee colony are considered as promising tools to support the honeybee population welfare. The majority of existing honeybee microbiota studies is focused on genetic description of the honeybee-associated microbiome fingerprints. The lack of a deeper knowledge on the bacterial community colonizing the honeybee niche, which may be helpful in encouraging industrial applications of this microbiota, led us to undertake this study. The biodiversity of the cultivable fructophilic lactic acid bacteria (FLAB) isolated from adult honeybee intestine and beebread samples was studied. Phenotypic properties of probiotic interest, such as the adhesive potential using in vitro models and adhesion determinants, were also investigated. Antibiotic resistance profiles as reliable markers to evaluate the impact of long-term and current exposure of honeybees to antibiotics were phenotypically determined on the isolated lactic acid bacteria (LAB). The mannose-specific adhesion and high cell surface hydrophobicity found in the studied FLAB isolates sheds light on the effective adaptation of microbiota to specific ecologic niche. It is the first report of phenotypically detected antibiotic resistance profiles of honeybee endogenous bacteria and the first account of minimum inhibitory concentration (MIC) values for four antibiotics used in beekeeping practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Becher MA, Osborne JL, Thorbek P, Kennedy PJ, Grimm V (2013) Review: towards a systems approach for understanding honeybee decline: a stocktaking and synthesis of existing models. J Appl Ecol 50:868–880

    Article  PubMed  PubMed Central  Google Scholar 

  • Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E, Duranti S et al (2012) Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 7:e44229. doi:10.1371/journal.pone.0044229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carina Audisio M, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiol Res 166:1–13

    Article  CAS  PubMed  Google Scholar 

  • Carminati D, Tidona F, Fornasari ME, Rossetti L, Meucci A, Giraffa G (2014) Biotyping of cultivable lactic acid bacteria isolated from donkey milk. Lett Appl Microbiol 59:299–305

    Article  CAS  PubMed  Google Scholar 

  • Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E et al (2012) Microbial symbionts: a resource for the management of insect-related problems. Microb Biotechnol 5:307–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Duary RK, Rajput YS, Batish VK, Grover S (2011) Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J Med Res 134:664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740. doi:10.2903/j.efsa.2012.2740

    Article  Google Scholar 

  • Endo A, Salminen S (2013) Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst Appl Microbiol 36:444–448

    Article  PubMed  Google Scholar 

  • Endo A, Futagawa-Endo Y, Dicks LM (2009) Isolation and characterization of fructophilic lactic acid bacteria from fructose-rich niches. Syst Appl Microbiol 32:593–600

    Article  CAS  PubMed  Google Scholar 

  • Engel P, Martinson VG, Moran NA (2012) Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci U S A 109:11002–11007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JD, Armstrong TN (2006) Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecol 6:4. doi:10.1186/1472-6785-6-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97:752–756

    Article  CAS  PubMed  Google Scholar 

  • Forsgren E, Olofsson TC, Vásquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidologie 41:99–108

    Article  Google Scholar 

  • Giraffa G, Neviani E (2000) Molecular identification and characterization of food-associated lactobacilli. Ital J Food Sci 12:403–423

    CAS  Google Scholar 

  • Gurgulova K, Panchev I, Stanchev P (2003) A study on antibacterial activity of Riphampizyn against bee disease microorganisms. Uludag Bee J 11:40–41

    Google Scholar 

  • Huey B, Hall J (1989) Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe from bacteriophage M13. J Bacteriol 171:2528–2532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann A, Kaenzig A (2004) Contamination of honey by the herbicide asulam and its antibacterial active metabolite sulfanilamide. Food Addit Contam 21:564–571

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Ogawa Y, Adachi Y (2006) Canine intestinal lactic acid bacteria agglutinated with concanavalin A. J Vet Med Sci 68:1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C et al (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:303–313

    Article  PubMed  Google Scholar 

  • Köhler GA, Assefa S, Reid G (2012) Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect Dis Obstet Gynecol 2012:636474. doi:10.1155/2012/636474

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy SB, Marshall BM (2013) Honeybees and tetracycline resistance. MBio 4:e00045-13. doi:10.1128/mBio.00045-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Mercenier A, Lenoir-Wijnkoop I, Sanders ME (2008) Physiological and functional properties of probiotics. Bull Int Dairy Fed 429:2–6

    Google Scholar 

  • Murray KD, Aronstein KA, Eischen F (2009) Promiscuous DNA and terramycin resistance in American foulbrood bacteria. Am Bee J 149:577–581

    Google Scholar 

  • Neveling DP, Endo A, Dicks LM (2012) Fructophilic Lactobacillus kunkeei and Lactobacillus brevis isolated from fresh flowers, bees and bee-hives. Curr Microbiol 65:507–515

    Article  CAS  PubMed  Google Scholar 

  • Olofsson TC, Vásquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 57:356–363

    Article  CAS  PubMed  Google Scholar 

  • Ortelli D, Edder P, Corvi C (2004) Analysis of chloramphenicol residues in honey by liquid chromatography–tandem mass spectrometry. Chromatographia 59:61–64

    Article  CAS  Google Scholar 

  • Pilatic H (2012) Pesticides and honey bees. State of the Science. Report from the Pesticide Action Network North America

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi:10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  • Reybroeck W, Daeseleire E, De Brabander HF, Herman L (2012) Antimicrobials in beekeeping. Vet Microbiol 158:1–11

    Article  CAS  PubMed  Google Scholar 

  • Rolfe RD (2000) The role of probiotic cultures in the control of gastrointestinal health. J Nutr 130:396S–402S

    CAS  PubMed  Google Scholar 

  • Rossetti L, Giraffa G (2005) Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases. J Microbiol Methods 63:135–144

    Article  CAS  PubMed  Google Scholar 

  • Rossetti L, Carminati D, Zago M, Giraffa G (2009) A qualified presumption of safety approach for the safety assessment of Grana Padano whey starters. Int J Food Microbiol 130:70–73

    Article  CAS  PubMed  Google Scholar 

  • Salminen S, van Loveren H (2012) Probiotics and prebiotics: health claim substantiation. Microb Ecol Health Dis 23:18568

    Google Scholar 

  • Smodis Skerl MI, Kmecl V, Gregorc A (2010) Exposure to pesticides at sublethal level and their distribution within a honey bee (Apis mellifera) colony. Bull Environ Contam Toxicol 85:125–128

    Article  CAS  PubMed  Google Scholar 

  • Suárez V, Zago M, Giraffa G, Reinheimer J, Quiberoni A (2009) Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii. J Dairy Res 76:433–440

    Article  PubMed  Google Scholar 

  • Tian B, Fadhil NH, Powell JE, Kwong WK, Moran NA (2012) Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. MBio 3:e00377-12. doi:10.1128/mBio.00377-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Tirado R, Simon G, Johnston P (2013) Bees in decline. A review of factors that put pollinators and agriculture in Europe at risk. Greenpeace Research Laboratories Technical Report (Review)

  • Vásquez A, Olofsson TC (2009) The lactic acid bacteria involved in the production of bee pollen and bee bread. J Apicult Res 48:189–195

    Article  Google Scholar 

  • Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L et al (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7:e33188. doi:10.1371/journal.pone.0033188

    Article  PubMed  PubMed Central  Google Scholar 

  • Vauterin L, Vauterin P (1992) Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur Microbiol 1:37–41

    Google Scholar 

  • Vidal JLM, Aguilera-Luiz MDM, Romero-González R, Frenich AG (2009) Multiclass analysis of antibiotic residues in honey by ultraperformance liquid chromatography-tandem mass spectrometry. J Agric Food Chem 57:1760–1767

    Article  PubMed  Google Scholar 

  • Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res Int 36:895–904

    Article  CAS  Google Scholar 

  • Vojvodic S, Rehan SM, Anderson KE (2013) Microbial gut diversity of Africanized and European honey bee larval instars. PLoS One 8:e72106. doi:10.1371/journal.pone.0072106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Sugimura Y, Taylor D, Yoshiyama M (2013) Honeybee gastrointestinal bacteria for novel and sustainable disease control strategies. J Dev Sust Agric 8:85–90

    Google Scholar 

  • Yoshiyama M, Wu M, Sugimura Y, Takaya N, Kimoto-Nira H, Suzuki C (2013) Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. J Invertebr Pathol 112:62–67

    Article  CAS  PubMed  Google Scholar 

  • Zago M, Fornasari ME, Carminati D, Burns P, Suàrez V, Vinderola G et al (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28:1033–1040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author I.J. would like to express his gratitude to the Shota Rustaveli National Science Foundation (SRNSF) for partial support allowing his PhD training in Italy. The author also expresses his gratitude to the Service of Science and Technology of the French Embassy in Tbilisi for the fellowship allowing his PhD training in France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Haertlé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janashia, I., Carminati, D., Rossetti, L. et al. Characterization of fructophilic lactic microbiota of Apis mellifera from the Caucasus Mountains. Ann Microbiol 66, 1387–1395 (2016). https://doi.org/10.1007/s13213-016-1226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-016-1226-2

Keywords

Navigation