Skip to main content
Log in

An effective microplate method (Biolog MT2) for screening native lignocellulosic-straw-degrading bacteria

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Lignocellulosic wastes such as straw are attractive resources for biofuel production when subjected to biological treatment (hydrolysis). However, their complex lignocellulosic structure can hinder saccharification. The urgent need for microbial groups with high levels of straw saccharifying activities is therefore a key step in the bioconversion of lignocellulosic straw into fermentable monosaccharides. Existing traditional methods of qualitative and quantitative screening of lignocellulolytic microbial isolates are costly, time consuming and largely not environmentally friendly. In this study, a Biolog (MT2) microplate-based assay was evaluated for potential use as an alternative screening method. This was carried out using three commercially available substrates (cellulose, xylan and lignin) and four native lignocellulosic straws (wheat, rice, sugarcane, and pea ball-milled straws). Selected bacterial isolates from soil, compost and straws were screened quantitatively using both traditional crude enzyme and Biolog (MT2) microplate methods. Positive correlations (R 2 values up to 0.86) between Biolog and the traditional enzyme methodologies were observed with respect to these isolates and their lignocellulosic activities. Quantitative assays were less labor intensive and faster (3–7 days) in Biolog microplates than in traditional assays which lasted for 12–15 days. Ball-milled rice and sugarcane straws were bio-converted to monosaccharaides more readily than wheat and pea straws and the commercially available substrates (cellulose, xylan and lignin). Environmental scanning electron microscopy (ESEM) analysis of ball-milled rice and sugarcane straws suggested that this was due to their higher silica content. Overall, the Biolog (MT2) microplate system was shown to be an effective, time saving and inexpensive alternative method for the screening of both lignocellulose-degrading bacteria and different substrates for saccharification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–c
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adetutu EM, Thorpe K, Shahsavari E, Bourne S, Cao X, Mazaheri Nezhad Fard R, Kirby G, Ball AS (2012) Bacterial community survey of sediments at Naracoorte Caves, Australia. Int J Speleol 41(2):2

    Article  Google Scholar 

  • Ali MY, Rahman M, Rahman A, Basaglia M, Rahman M, Sultana T, Casella S (2014) Isolation of Bacillus spp. From soil and an evaluation of their sensitivity towards different extracts and essential oils of cumin (Cuminum cyminum L.). J Agric Sci Technol 16(3):623–633

    CAS  Google Scholar 

  • Alvira P, Ballesteros M, Negro MJ (2013) Progress on enzymatic saccharification technologies for biofuels production. In: Gupta VK, Touhy M (eds) Biofuel technologies. Springer, Berlin, pp 145–169

  • Archana A, Satyanarayana T (1997) Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzym Microb Technol 21(1):12–17

    Article  CAS  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23(3):257–270. doi:10.1016/0168-1656(92)90074-J

    Article  CAS  Google Scholar 

  • Ball AS, McCarthy AJ (1988) Saccharification of straw by actinomycete enzymes. J Gen Microbiol 134(8):2139–2147

    CAS  Google Scholar 

  • Bandounas L, Wierckx N, de Winde J, Ruijssenaars H (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11(1):94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey R (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 4(1):77–93

    Article  CAS  Google Scholar 

  • Binod P, Sindhu R, Singhania RR, Vikram S, Devi L, Nagalakshmi S, Kurien N, Sukumaran RK, Pandey A (2010) Bioethanol production from rice straw: an overview. Bioresour Technol 101(13):4767–4774

    Article  CAS  PubMed  Google Scholar 

  • Boonmee A (2009) Screening of rice straw degrading microorganisms and their cellulase activities. KKU Sci J 37:83–88

    Google Scholar 

  • Brito-Cunha CCD, de Campos ITN, de Faria FP, Bataus LAM (2013) Screening and xylanase production by streptomyces sp grown on lignocellulosic wastes. Appl Biochem Biotechnol 170(3):598–608. doi:10.1007/s12010-013-0193-3

    Article  CAS  PubMed  Google Scholar 

  • Bushnell LD, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41(5):653–673

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18(4):295–331. doi:10.1080/0738-859891224185

    Article  CAS  PubMed  Google Scholar 

  • Chou C-H, Han C-L, Chang J-J, Lay J-J (2011) Co-culture of Clostridium beijerinckii L9, Clostridium butyricum M1 and Bacillus thermoamylovorans B5 for converting yeast waste into hydrogen. Int J Hydrog Energy 36(21):13972–13983

    Article  CAS  Google Scholar 

  • Chun J, Bae KS (2000) Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 78(2):123–127

    Article  CAS  PubMed  Google Scholar 

  • Das H, Singh SK (2004) Useful byproducts from cellulosic wastes of agriculture and food industry: a critical appraisal. Crit Rev Food Sci Nutr 44(2):77–89

    Article  PubMed  Google Scholar 

  • Dashtban M, Schraft H, Qin WS (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5(6):578–595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dashtban M, Maki M, Leung KT, Mao C, Qin W (2010) Cellulase activities in biomass conversion: measurement methods and comparison. Crit Rev Biotechnol 30(4):302–309

    Article  CAS  PubMed  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M (2008) Phylogeny. fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(suppl 2):W465–W469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Domínguez‐Escribá L, Porcar M (2010) Rice straw management: the big waste. Biofuels Bioprod Biorefin 4(2):154–159

    Article  Google Scholar 

  • dos Santos LF, Defrenne L, Krebs-Brown A (2002) Comparison of three microbial assay procedures for measuring toxicity of chemical compounds: ToxAlert (R) 10, cell sense and biolog MT2 microplates. Anal Chim Acta 456(1):41–54. doi:10.1016/S0003-2670(01)00907-2

    Article  Google Scholar 

  • Frias M, Villar-Cociña E, Valencia-Morales E (2007) Characterisation of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters. Waste Manag 27(4):533–538

    Article  CAS  PubMed  Google Scholar 

  • Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. In: Olsson L (ed) Biofuels. Advances in Biochemical Engineering/Biotechnology, vol 8. Springer, Berlin, pp 41–65

  • Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268. doi:10.1351/pac198759020257

    Article  CAS  Google Scholar 

  • Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29(9):419–425. doi:10.1016/j.tibtech.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  • Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y (2002) Construction of a stable microbial community with high cellulose-degradation ability. Appl Microbiol Biotechnol 59(4–5):529–534

    CAS  PubMed  Google Scholar 

  • Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36(3):275–287

    Article  CAS  PubMed  Google Scholar 

  • Howard R, Abotsi E, Van Rensburg EJ, Howard S (2004) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2(12):602–619

    Article  Google Scholar 

  • Huang C-H, Chang M-T, Huang L, Chu W-S (2012) Development of a novel PCR assay based on the gyrase B gene for species identification of Bacillus licheniformis. Mol Cell Probes 26(5):215–217

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim ASS, El-diwany AI (2007) Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust J Basic Appl Sci 1(4):473–478

    CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1(2):119–134

    Article  Google Scholar 

  • Kadali KK, Simons KL, Skuza PP, Moore RB, Ball AS (2012) A complementary approach to identifying and assessing the remediation potential of hydrocarbonoclastic bacteria. J Microbiol Methods 88(3):348–355

    Article  CAS  PubMed  Google Scholar 

  • Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57(5):503–507

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729. doi:10.1021/Ie801542g

    Article  CAS  Google Scholar 

  • Lu WJ, Wang HT, Huang CY, Reichardt W (2008) Aromatic compound degradation by iron reducing bacteria isolated from irrigated tropical paddy soils. J Environ Sci China 20(12):1487–1493

    Article  CAS  PubMed  Google Scholar 

  • Lucas F, Broennimann O, Febbraro I, Heeb P (2003) High diversity among feather-degrading bacteria from a dry meadow soil. Microb Ecol 45(3):282–290

    Article  CAS  PubMed  Google Scholar 

  • Maki ML, Idrees A, Leung KT, Qin W (2012) Newly isolated and characterized bacteria with great application potential for decomposition of lignocellulosic biomass. J Mol Microbiol Biotechnol 22(3):156–166

    Article  CAS  PubMed  Google Scholar 

  • Manage PM, Edwards C, Singh BK, Lawton LA (2009) Isolation and identification of novel microcystin-degrading bacteria. Appl Environ Microbiol 75(21):6924–6928. doi:10.1128/Aem. 01928-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michelin M, Maria de Lourdes T, Ruzene DS, Silva DP, Teixeira JA (2013) Application of lignocelulosic residues in the production of cellulase and hemicellulases from fungi. In: Polizeli M de Lourdes TM, Rai M (ed) Fungal enzymes. CRC, Boca Raton, pp 31–64

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. doi:10.1021/Ac60147a030

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Murad HA, Azzaz HEDH (2013) Cellulase production from rice straw by Aspergillus flavus NRRL 552. Sci Int 1(4)103–107

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153(2):375–379

    CAS  Google Scholar 

  • Obruca S, Marova I, Matouskova P, Haronikova A, Lichnova A (2012) Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiol 57(3):221–227

    Article  CAS  Google Scholar 

  • Pandey S, Singh S, Yadav AN, Nain L, Saxena AK (2013) Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci Biotechnol Biochem 77(7):1474–1480

    Article  CAS  PubMed  Google Scholar 

  • Pérez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5(2):53–63

    Article  PubMed  Google Scholar 

  • Plecha S, Hall D, Tiquia-Arashiro SM (2013) Screening for novel bacteria from the bioenergy feedstock switchgrass (Panicum virgatum L.). Environ Technol 34(13–14):1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Pohlschroeder M, Leschine SB, Canale-Parola E (1994) Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum. Arch Microbiol 161(1):17–24

    CAS  Google Scholar 

  • Prasanna P, Patel M (1987) SEM studies on silica from plant materials. X-Ray Spectrom 16(2):57–60

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–291. doi:10.1007/s10295-003-0049-x

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194. doi:10.1016/j.biotechadv.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  • Sewalt V, Glasser W, Beauchemin K (1997) Lignin impact on fiber degradation. 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J Agric Food Chem 45(5):1823–1828

    Article  CAS  Google Scholar 

  • Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava A (2008) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24(5):667–673

    Article  CAS  Google Scholar 

  • Soni SK, Batra N, Bansal N, Soni R (2010) Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus sp. S4B2F. BioResour 5(2):741–757

    CAS  Google Scholar 

  • Taherdanak M, Zilouei H (2014) Improving biogas production from wheat plant using alkaline pretreatment. Fuel 115:714–719

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran D-T, Lin C-W (2013) Developing co-culture system of dominant cellulolytic Bacillus sp. THLA0409 and dominant ethanolic Klebsiella oxytoca THLC0409 for enhancing ethanol production from lignocellulosic materials. J Taiwan Inst Chem Eng 44(5):762–769

    Article  CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itavaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72(2):169–183. doi:10.1016/S0960-8524(99)00104-2

    Article  CAS  Google Scholar 

  • Wang H, Guo P, Wang X, Wang X, Cui Z (2012) Degrading capability and activity of extracellular xylanase secreted by a composite microbial system XDC-2. Afr J Biotechnol 11(34):8476–8483

    CAS  Google Scholar 

  • Wu B, Zhao Y, Gao PJ (2007) A new approach to measurement of saccharifying capacities of crude cellulase. BioResources 1(2):189–200

    Google Scholar 

  • Wu Q, Lu Y-F, Shi J-Z, Liang S-X, Shi J-S, Liu J (2011) Chemical form of metals in traditional medicines underlines potential toxicity in cell cultures. J Ethnopharmacol 134(3):839–843

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13(2):119–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to RMIT University and the Egyptian Government for the provision of a PhD scholarship to Mohamed Taha. The authors also acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility (AMMRF) at the RMIT Microscopy & Microanalysis Facility, at RMIT University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Taha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Enzyme activities (cellulase, xylanase and strawase U mL−1) of the 30 different bacterial isolates using the traditional crude enzyme production assay method (DOCX 949 kb)

Supplementary Figure 1

Phylogenetic tree of selected bacterial isolates. Note: tree was constructed from 1,000–1,200 nucleotide positions. Distances were calculated with the maximum likelihood model using PhyML. Bootstrap values > 0.50 are shown. Asterisks refer to lowest enzyme activity (based on strawase assay) by the traditional assays and to the “negative isolates” by Biolog (MT2) microplates.(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M., Kadali, K.K., AL-Hothaly, K. et al. An effective microplate method (Biolog MT2) for screening native lignocellulosic-straw-degrading bacteria. Ann Microbiol 65, 2053–2064 (2015). https://doi.org/10.1007/s13213-015-1044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1044-y

Keywords

Navigation