Skip to main content
Log in

Electrochemical Detection of S-RBD Protein for Point-of-Care SARS-CoV-2 Monitoring Using Platinum-Black-Based Sensor Array

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The COVID-19 pandemic has led to a substantial increase in the advancement of point-of-care (POC) diagnostic tools due to their potential utility in detecting and managing the spread of the disease. Currently, many diagnostic techniques necessitate advanced laboratory equipment and specialized expertise to deliver dependable, cost-effective, specific, and sensitive POC tests for COVID-19 diagnosis. Herein, we report a highly sensitive electrochemical sensor array that features S-RBD protein, covalently anchored on the surface-engineered Pt-black-coated microdisk gold electrodes to monitor severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Computer simulations were performed using different electrode gaps to optimize and fabricate the gold microdisk electrode array. The high sensitivity was ensured by decreasing the electrode gap as well as by depositing Pt-black nanoparticles on the microdisk gold electrodes, by means of chronopotentiometry. The electrical readout depends on monitoring changes in the cyclic voltammograms at the electrode/electrolyte interface as a result of the competitive interaction between monoclonal COVID-19 antibodies and varying antigen concentrations. Overall, the developed electrochemical sensor array exhibits promising electroanalytical capabilities by displaying an excellent linear response ranging from 100 to 1 µg/ml with a detection limit of ~ (0.23 ng/ml). In addition, as a proof-of-concept application, the developed electrochemical sensor array was employed as a sensing platform for the detection of heat-inactivated SARS-CoV-2. Such accomplishments highlight the advantages of low-cost localized electronic devices with high sensitivity and rapid multiple samples detection capabilities to play a crucial role in controlling the spread of infectious diseases like COVID-19.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. World Health Organization (WHO): Weekly Epidemiological Update on COVID-19—25 January 2022, https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-january-2022.

  2. Rai, P., Kumar, B.K., Deekshit, V.K., Karunasagar, I., Karunasagar, I.: Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl. Microbiol. Biotechnol. 105, 441–455 (2021). https://doi.org/10.1007/s00253-020-11061-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaltenboeck, B., Wang, C.: Advances in real-time PCR: application to clinical laboratory diagnostics. Adv. Clin. Chem. 40, 219–259 (2005). https://doi.org/10.1016/S0065-2423(05)40006-2

    Article  CAS  PubMed  Google Scholar 

  4. Radonić, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., Nitsche, A.: Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun. 313, 856–862 (2004). https://doi.org/10.1016/j.bbrc.2003.11.177

    Article  CAS  PubMed  Google Scholar 

  5. Smith, C.J., Osborn, A.M.: Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 67, 6–20 (2009). https://doi.org/10.1111/j.1574-6941.2008.00629

    Article  CAS  PubMed  Google Scholar 

  6. Lee, J.S., Ahn, J.J., Kim, S.J., et al.: POCT detection of 14 respiratory viruses using multiplex RT-PCR. BioChip J. J. 15, 371–380 (2021). https://doi.org/10.1007/s13206-021-00037-w

    Article  CAS  Google Scholar 

  7. Freeman, M., Walker, S.J., Vrana, K.E.: Quantitative RT-PCR: pitfalls and potential. Biotechniques (1999). https://doi.org/10.2144/99261rv01

    Article  PubMed  Google Scholar 

  8. Vashist, S.K.: In vitro diagnostic assays for COVID-19: recent advances and emerging trends. Diagnostics 10, 1–7 (2020). https://doi.org/10.3390/diagnostics10040202

    Article  Google Scholar 

  9. Loeffelholz, M.J., Tang, Y.-W.: Laboratory diagnosis of emerging human coronavirus infections—the state of the art. Emerg. Microb. Infect. 9, 747–756 (2020). https://doi.org/10.1080/22221751.2020.1745095

    Article  CAS  Google Scholar 

  10. Liu, X., Wang, J., Xu, X., Liao, G., Chen, Y., Hu, C.-H.: Patterns of IgG and IgM antibody response in COVID-19 patients. Emerg. Microb. Infect. (2020). https://doi.org/10.1080/22221751.2020.1773324

    Article  Google Scholar 

  11. Ha, Y., Kim, I.: Recent developments in innovative magnetic nanoparticles-based immunoassays: from improvement of conventional immunoassays to diagnosis of COVID-19. BioChip J. J. 16, 351–365 (2022). https://doi.org/10.1007/s13206-022-00064-1

    Article  CAS  Google Scholar 

  12. Kim, S.K., Sung, H., Hwang, S.H., et al.: A new quantum dot-based lateral flow immunoassay for the rapid detection of influenza viruses. BioChip J. J. 16, 175–182 (2022). https://doi.org/10.1007/s13206-022-00053-4

    Article  CAS  Google Scholar 

  13. Grant, B.D., Anderson, C.E., Williford, J.R., Alonzo, L.F., Glukhova, V.A., Boyle, D.S., Weigl, B.H., Nichols, K.P.: SARS-CoV-2 coronavirus nucleocapsid antigen-detecting half-strip lateral flow assay toward the development of point of care tests using commercially available reagents. Anal. Chem. (2020). https://doi.org/10.1021/acs.analchem.0c01975

    Article  PubMed  Google Scholar 

  14. Pan, R., Li, G., Liu, S., Zhang, X., Liu, J., Su, Z., Wu, Y.: Emerging nanolabels-based immunoassays: principle and applications in food safety, TrAC. Trends Anal. Chem. 145, 116462 (2021). https://doi.org/10.1016/j.trac.2021.116462

    Article  CAS  Google Scholar 

  15. Itoh, K., Kawamitsu, T., Osaka, Y., Sato, K., Suzuki, Y., Kiriba, C., Saito, Y., Hirose, R., Ichihara, H., Saito, M., Mitsuke, Y., Kuzumi, K., Miyashita, H., Tsutani, H.: False positive results in severe acute respiratory coronavirus 2 (SARS-CoV-2) rapid antigen tests for inpatients. J. Infect. Chemother. (2021). https://doi.org/10.1016/j.jiac.2021.03.011

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yamaniha, K., Kinjo, T., Akamine, M., Setoguchi, M., Tateyama, M., Fujita, J.: False-positive for SARS-CoV-2 antigen test in a man with acute HIV infection. J. Infect. Chemother. (2021). https://doi.org/10.1016/j.jiac.2021.04.011

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jesadabundit, W., Jampasa, S., Patarakul, K., Siangproh, W., Chailapakul, O.: Enzyme-free impedimetric biosensor-based molecularly imprinted polymer for selective determination of L-hydroxyproline. Biosens. Bioelectron. (2021). https://doi.org/10.1016/j.bios.2021.113387

    Article  PubMed  Google Scholar 

  18. Son, M.H., Park, S.W., Sagong, H.Y., et al.: Recent advances in electrochemical and optical biosensors for cancer biomarker detection. BioChip J. J. 17, 44–67 (2023). https://doi.org/10.1007/s13206-022-00089-6

    Article  CAS  Google Scholar 

  19. Assaifan, A.K., Alqahtani, F.A., Alnamlah, S., et al.: Detection and real-time monitoring of LDL-cholesterol by redox-free impedimetric biosensors. BioChip J. J. 16, 197–206 (2022). https://doi.org/10.1007/s13206-022-00058-z

    Article  CAS  Google Scholar 

  20. Eom, G., Hwang, A., Kim, H., et al.: Ultrasensitive detection of ovarian cancer biomarker using au nanoplate SERS immunoassay. BioChip J. J. 15, 348–355 (2021). https://doi.org/10.1007/s13206-021-00031-2

    Article  CAS  Google Scholar 

  21. Quoc, T.V., Ngoc, V.N., Bui, T.T., et al.: High-frequency interdigitated array electrode-based capacitive biosensor for protein detection. BioChip J. J. 13, 403–415 (2019). https://doi.org/10.1007/s13206-019-3412-3

    Article  CAS  Google Scholar 

  22. Fabiani, L., Saroglia, M., Galatà, G., De Santis, R., Fillo, S., Luca, V., Faggioni, G., D’Amore, N., Regalbuto, E., Salvatori, P.: Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: a reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens. Bioelectron. 171, 1–9 (2021). https://doi.org/10.1016/j.bios.2020.112686

    Article  CAS  Google Scholar 

  23. Kwon, N., Lee, S., Jang, M., et al.: Synthesis of truncated DNA aptamer and its application to an electrochemical biosensor consisting of an aptamer and a MXene heterolayer for yellow fever virus. BioChip J. J. (2023). https://doi.org/10.1007/s13206-023-00133-z

    Article  Google Scholar 

  24. Beduk, D., et al.: ‘All In One’ SARS-CoV-2 variant recognition platform: machine learning-enabled point of care diagnostics. Biosens. Bioelectron. X 10, 100105 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Salahandish, R., et al.: Bi-ECDAQ: An electrochemical dual-immuno-biosensor accompanied by a customized bi-potentiostat for clinical detection of SARS-CoV-2 Nucleocapsid proteins. Biosens. Bioelectron. 203, 114018 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, S., Lee, J.H.: Current advances in paper-based biosensor technologies for rapid COVID-19 diagnosis. BioChip J. J. 16, 376–396 (2022). https://doi.org/10.1007/s13206-022-00078-9

    Article  CAS  Google Scholar 

  27. Hosseini, M., et al.: Development of sandwich electrochemiluminescence immunosensor for COVID-19 diagnosis by SARS-CoV-2 spike protein detection based on Au@BSA-luminol nanocomposites. Bioelectrochemistry 147, 108161 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bong, J.H., Kim, T.H., Jung, J., et al.: Competitive immunoassay of SARS-CoV-2 using pig sera-derived anti-SARS-CoV-2 antibodies. BioChip J. J. 15, 100–108 (2021). https://doi.org/10.1007/s13206-021-00011-6

    Article  CAS  Google Scholar 

  29. de Lima, L.F., Ferreira, A.L., Torres, M.D.T., de Araujo, W.R., de la Fuente-Nunez, C.: Minute-scale detection of SARS-CoV-2 using a low-cost biosensor composed of pencil graphite electrodes. Proc. Natl. Acad. Sci. U.S.A. (2021). https://doi.org/10.1073/pnas.2106724118

    Article  PubMed  PubMed Central  Google Scholar 

  30. El-Said, W.A., Al-Bogami, A.S., Alshitari, W., et al.: Electrochemical microbiosensor for detecting COVID-19 in a patient sample based on gold microcuboids pattern. BioChip J. J. 15, 287–295 (2021). https://doi.org/10.1007/s13206-021-00030-3

    Article  CAS  Google Scholar 

  31. Bin, X., Sargent, E.H., Kelley, S.O.: Nanostructuring of sensors determines the efficiency of biomolecular capture. Anal. Chem. 82, 5928–5931 (2010). https://doi.org/10.1021/ac101164n

    Article  CAS  PubMed  Google Scholar 

  32. Soleymani, L., Fang, Z., Sargent, E.H., Kelley, S.O.: Programming the detection limits of biosensors through controlled nanostructuring. Nat. Nanotechnol. 4, 844–848 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Asif, A., Park, S.H., Soomro, A.M., Khalid, M.A.U., Salih, A.R.C., Kang, B., Ahmed, F., Kim, K.H., Choi, K.H.: Microphysiological system with continuous analysis of albumin for hepatotoxicity modeling and drug screening. J. Ind. Eng. Chem. (2021). https://doi.org/10.1016/j.jiec.2021.03.035

    Article  Google Scholar 

  34. Sardesai, N.P., Ganesana, M., Karimi, A., Leiter, J.C., Andreescu, S.: Platinum-doped ceria based biosensor for in vitro and monitoring of lactate during hypoxia. Anal. Chem. 87(5), 2996–3003 (2015). https://doi.org/10.1021/ac5047455

    Article  CAS  PubMed  Google Scholar 

  35. Kamal Ahmed, R., Saad, E.M., Fahmy, H.M., El Nashar, R.M.: Design and application of molecularly imprinted polypyrrole/platinum nanoparticles modified platinum sensor for the electrochemical detection of Vardenafil. Microchem. J.. J. 171, 106771 (2021)

    Article  CAS  Google Scholar 

  36. Park, J.A., Kwon, N., Park, E., Kim, Y., Jang, H., Min, J., Lee, T.: Electrochemical biosensor with aptamer/porous platinum nanoparticle on round-type micro-gap electrode for saxitoxin detection in fresh water. Biosens. Bioelectron. 210, 114300 (2022)

    Article  CAS  PubMed  Google Scholar 

  37. Aydın, E.B., Aydın, M., Sezgintürk, M.K.: Highly selective and sensitive sandwich immunosensor platform modified with MUA-capped GNPs for detection of spike Receptor Binding Domain protein: a precious marker of COVID 19 infection. Sens. Actuat. B Chem. 345, 130355 (2021)

    Article  Google Scholar 

  38. Chen, X., Guo, Z., Tang, Y., Shen, Y., Miao, P.: A highly sensitive gold nanoparticle-based electrochemical aptasensor for theophylline detection. Anal. Chim. Acta 25(999), 54–59 (2018). https://doi.org/10.1016/j.aca.2017.10.039. (Epub 2017 Nov 9)

    Article  CAS  Google Scholar 

  39. Lu, Z., Xu, S., Wang, H., He, E., Liu, J., Dai, Y., Xie, J., Song, Y., Wang, Y., Wang, Y., et al.: PtNPt/MWCNT-PEDOT:PSS-modified microelectrode arrays for the synchronous dopamine and neural spike detection in rat models of sleep deprivation. ACS Appl. Bio Mater. 4, 4872–4884 (2021)

    Article  CAS  PubMed  Google Scholar 

  40. Xiao, G., Song, Y., Zhang, Y., Xu, S., Xing, Y., Wang, M., Cai, X.: Platinum/graphene oxide coated microfabricated arrays for multinucleus neural activities detection in the rat models of Parkinson’s disease treated by apomorphine. ACS Appl. Bio Mater. 2, 4010–4019 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T., Veesler, D.: Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181(2), 281-292.e6 (2020). https://doi.org/10.1016/j.cell.2020.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, Y., Yang, C., Xu, X.-F., Xu, W., Liu, S.-W.: Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 41, 1141–1149 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nguyen, H.L., Lan, P.D., Thai, N.Q., Nissley, D.A., O’Brien, E.P., Li, M.S.: Does SARS-CoV-2 bind to human ACE2 more strongly than does SARS-CoV? J. Phys. Chem. B 124, 7336–7347 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saitou, M.: Electrochemical characterization of platinum black electrodeposited from electrolyte including lead acetate trihydrate. Surf. Coat. Technol. 201(6), 3611–3614 (2006)

    Article  CAS  Google Scholar 

  45. Castiello, F.R., et al.: Interfacial capacitance immunosensing using interdigitated electrodes: the effect of insulation/immobilization chemistry. Phys. Chem. Chem. Phys. 21(28), 15787–15797 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. Park, B.-W., Yoon, D.-Y., Kim, D.-S.: Formation and modification of a binary self-assembled monolayer on a nano-structured gold electrode and its structural characterization by electrochemical impedance spectroscopy. J. Electroanal. Chem.Electroanal Chem. 661(2), 329–335 (2011). https://doi.org/10.1016/j.jelechem.2011.08.013

    Article  CAS  Google Scholar 

  47. Gollas, B., Elliott, J.M., Bartlett, P.N.: Electrodeposition and properties of nanostructured platinum films studied by quartz crystal impedance measurements at 10 MHz. Electrochim. Acta. Acta 45(22–23), 3711–3724 (2000). https://doi.org/10.1016/s0013-4686(00)00464-3

    Article  CAS  Google Scholar 

  48. Santos, A.: Fundamentals and applications of impedimetric and redox capacitive biosensors. J. Anal. Bioanal. Tech. (2014). https://doi.org/10.4172/2155-9872.S7-016

    Article  Google Scholar 

  49. Bath, B.D., Michael, D.J., Trafton, B.J., Joseph, J.D., Runnels, P.L., Wightman, R.M.: Subsecond adsorption and desorption of dopamine at carbon-fiber microelectrodes. Anal. Chem. 72(24), 5994–6002 (2000). https://doi.org/10.1021/ac000849y

    Article  CAS  PubMed  Google Scholar 

  50. Taheri, R.A., Rezayan, A.H., Rahimi, F., Mohammadnejad, J., Kamali, M.: Comparison of antibody immobilization strategies in detection of Vibrio cholerae by surface plasmon resonance. Biointerphases 11(4), 041006 (2016). https://doi.org/10.1116/1.4971270

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Z., Huang, C., Huang, Z., Lin, F., He, Q., Tao, D., Jaffrezic-Renault, N., Guo, Z.: Advancements in electrochemical biosensing for respiratory virus detection: a review. TrAC Trends Anal. Chem. (2021). https://doi.org/10.1016/j.trac.2021.116253

    Article  Google Scholar 

  52. Zhang, Z., Hu, W., Li, L., Ding, H., Li, H.: Therapeutic monoclonal antibodies and clinical laboratory tests: when, why, and what is expected? J. Clin. Lab. Anal.Clin. Lab. Anal. (2017). https://doi.org/10.1002/jcla.22307

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Gachon University research fund (GCU-202002710001, GCU-202303970001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungbo Cho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1250 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeeshan, Selvam, S.P., Park, J. et al. Electrochemical Detection of S-RBD Protein for Point-of-Care SARS-CoV-2 Monitoring Using Platinum-Black-Based Sensor Array. BioChip J (2024). https://doi.org/10.1007/s13206-024-00153-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13206-024-00153-3

Keywords

Navigation