Skip to main content
Log in

High-Performance Graphene FET Integrated Front-End Amplifier Using Pseudo-resistor Technique for Neuro-prosthetic Diagnosis

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

A complex analysis of spike monitoring in neuro-prosthetic diagnosis demands a high-speed sub-nanoscale transistors with an advanced device technologies. This work reports the high performance of Graphene field-effect transistor (GFET) based front-end amplifier (FEA) design for the neuro-prosthetic application. The 9 nm Graphene FET device is optimized by characterization of transconductance and drain current towards high sensitivity and small factor. The proposed GFET-based FEA with pseudo-resistor technique demonstrates very high-input impedance in Tera-ohms that nullify the input leakage current. Here, gain-bandwidth product and noise optimization of GFET FEA enhances the overall gain with negligible noise. The proposed design operates at low voltage, further reduces the power consumption, and achieves less chip area in sub-nano size so it could be more suitable for implantable devices. The GFET-based FEA architecture achieves an action potential spike of 1.4 µV while the local field potentials spike of 1.8 mV. The proposed architecture is implemented in Advanced Design System using the design kit of the GFET process. Power consumption of 3.14 µW is observed with a supply voltage of 0.9 V. The simulated and experimental results of the proposed design achieve an input impedance of 2 TΩ with excellent noise performance over a wideband of 13.85 MHz. The proposed work demonstrates better neural activity sensing when compared to the state-of-the-artwork, which could be highly beneficial for future neuroscientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

source voltage b Drain current vs drain source voltage

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Thakur, C.S., Molin, J., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., Schemmel, J., Wang, R., Chicca, E., Hasler, J.O., Seo, J.-S., Shimeng, Y., Cao, Y., van Schaik, A., Cummings, R.E.: Large-scale neuromorphic spiking array processors: a quest to mimic the brain. Front Neurosci 12, 891 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferro, M.D., Melosh, N.A.: Electronic and ionic materials for neuro interfaces. Adv Funct Mater 28, 1704335 (2018)

    Article  Google Scholar 

  3. Kostarelos, K., Vincent, M., Hebert, C., Garrido, J.A.: Graphene in the design and engineering of next-generation neural interfaces. Adv Mater 29, 1700909 (2017)

    Article  Google Scholar 

  4. Yan, F., Zhang, M., Li, J.: Solution-gated graphene transistors for chemical and biological sensors. Adv Healthcare Mater 3, 313–331 (2014)

    Article  CAS  Google Scholar 

  5. Kuzum, D., Takano, H., Shim, E., Reed, J.C., Juul, H., Richardson, A.G., De Vries, J., Bink, H., Dichter, M.A., Lucas, T.H.: Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun 5, 5259 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Liu X, Lu Y, Iseri E, Ren C, Liu H, Komiyama T, Kuzum D: Transparent artifact-free graphene electrodes for compact closed-loop optogenetics systems. In: IEEE International Electron Devices Meeting, pp. 26.1.1–26.1.4 (2017)

  7. Lu, Y., Lyu, H., Richardson, A.G., Lucas, T.H., Kuzum, D.: Flexible neural electrode array based-on porous graphene for cortical microstimulation and sensing. Sci Rep 6, 33526 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fatoorechi, M., et al.: A comparative study of electrical potential sensors and Ag/AgCl electrodes for characterizing spontaneous and event related electroencephalogram signals. J. Neurosci. Methods. 251, 7–16 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. Guermandi, M., Cardu, R., Scarselli, E.F., Guerrieri, R.: Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance. IEEE Trans. Biomed. Circuits Syst. 9, 21–33 (2015)

    Article  PubMed  Google Scholar 

  10. Lopez, C.M., et al.: An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid- State Circuits. 49, 248–261 (2014)

    Article  Google Scholar 

  11. Chen, W.M., et al.: A fully integrated 8-channel closed-loop neural-prosthetic CMOS SOC for real-time epileptic seizure control. IEEE J. Solid-State Circuits. 49, 232–247 (2014)

    Article  CAS  Google Scholar 

  12. Barsakcioglu, D.Y., et al.: An analogue front-end model for developing neural spike sorting systems. IEEE Trans. Biomed. Circuits Syst. 8, 216–227 (2014)

    Article  PubMed  Google Scholar 

  13. Chi, Y.M., Jung, T.P., Cauwenberghs, G.: Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)

    Article  PubMed  Google Scholar 

  14. Nelson, M.J.: Review of signal distortion through metal microelectrode recording circuits and filters. J. Neuro-sci. Methods. 169, 141–157 (2008)

    Article  Google Scholar 

  15. Mohseni, P., Najafi, K.: A fully integrated neural recording amplifier with DC input stabilization. IEEE Trans. Biomed. Eng. 51, 832–837 (2004)

    Article  PubMed  Google Scholar 

  16. Demosthenous, A., Pachnis, I., Jiang, D., Donaldson, N.: An integrated amplifier with passive neutralization of myoelectric interference from neural recording tripoles. IEEE Sens. J. 13, 3236–3248 (2013)

    Article  Google Scholar 

  17. Spinelli, E., Haberman, M., Garcia, P., Guerrero, F.: A capacitive electrode with fast recovery feature. Physiol. Meas. 33, 1277–1288 (2012)

    Article  PubMed  Google Scholar 

  18. Zhang, F., Holleman, J., Otis, B.: Design of ultra-low power bio-potential amplifiers for bio-signal acquisition applications. IEEE Trans. Biomed. Circuits Syst. 6, 344–355 (2012)

    Article  PubMed  Google Scholar 

  19. Park, S.Y., Cho, J., Na, K., Yoon, E.: Modular128-channel ∆—∆R analog front-end architecture using spectrum equalization scheme for 1024-channel 3-D neural recording microsystems. IEEE J. Solid-State Circuits 53(2), 501–514 (2018)

    Article  Google Scholar 

  20. Zhang, X., Wang, J., Zhu, Z.: A low-power low-noise amplifier with fully self-biased feedback loop structure for neural recording. Analog Integr. Circ. Sig. Process 99, 199–208 (2019)

    Article  Google Scholar 

  21. Chandra Kumar, H., Markovic, D.: A high dynamic range neural recording chopper amplifier for simultaneous neural recording and stimulation. IEEE J. Solid-State Circuits 52, 645–656 (2017)

    Article  Google Scholar 

  22. Hess, L.H., Seifert, M., Garrido, J.A.: Graphene transistors for bioelectronics. Proc. IEEE 101, 1780–1791 (2013)

    Article  CAS  Google Scholar 

  23. Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys 83, 407–470 (2011)

    Article  CAS  Google Scholar 

  24. Forsyth, R., Devadoss, A., Guy, O.J.: Graphene field effect transistors for biomedical applications: current status and future prospects. MPDI Diagnostics 7, 45 (2017)

    Article  Google Scholar 

  25. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Kuila, T., Bose, S., Khanra, P., Mishra, A.K., Kim, N.H., Lee, J.H.: Recent advances in graphene-based biosensors. Biosens. Bioelectron 26, 4637–4648 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, W.Z., Huang, P.J.J., Ding, J.S., Liu, J.: Aptamer-based biosensors for biomedical diagnostics. Analyst 139, 2627–2640 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. Matsumoto, K., Maehashi, K., Ohno, Y., Inoue, K.: Recent advances in functional graphene biosensors. J. Phys. D Appl. Phys 47, 6 (2014)

    Article  Google Scholar 

  29. Liu, M.C., Duan, Y.X., Wang, Y., Zhao, Y.: Diazonium functionalization of graphene nanosheets and impact response of aniline modified graphene/bismaleimide nanocomposites. Mater. Des 53, 466–474 (2014)

    Article  CAS  Google Scholar 

  30. Steinhoff, G., Baur, B., Wrobel, G., Ingebrandt, S., Offenha”usser, A., Dadgar, A., Krost, A., Stutzmann, M., Eickhoff, M.: Recording of cell action potentials with AlGaN/GaN field-effect transistors. Appl. Phys. Lett. 86, 033901 (2005)

    Article  Google Scholar 

  31. Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 60, 1764–1783 (2012). https://doi.org/10.1109/TMTT.2012.2187535

    Article  CAS  Google Scholar 

  32. Yichen, Lu., Liu, X., Kuzum, D.: Graphene-based neurotechnology for advanced neural interfaces. Curr Opin Biomed Eng 6(138–147), 2468–4511 (2018)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the part of KOREA-INDIA joint program of cooperation in science and technology through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2020K1A3A1A19086889) and in part by the India-Korea Research International Bilateral Cooperation Division through Ministry of Science and Technology, Government of India under Grant (No. INT/Korea/P-55).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjung Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, J.D., Gorre, P., Akuri, N.G. et al. High-Performance Graphene FET Integrated Front-End Amplifier Using Pseudo-resistor Technique for Neuro-prosthetic Diagnosis. BioChip J 16, 270–279 (2022). https://doi.org/10.1007/s13206-022-00060-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00060-5

Keywords

Navigation