Skip to main content
Log in

Separation, Purification, and Detection of cfDNA in a Microfluidic Device

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Cell free DNA (cfDNA) is degraded DNA fragments found in the blood plasma of cancer patients. While cfDNA is a good marker for early diagnostics and cancer prognosis, the extraction of cfDNA from whole blood and sample preparation for later sequencing is still challenging. Here, we presented a microfluidic device for the removal of cells from a cfDNA sample in a first step. In a second step, carboxylated magnetic beads were used for cfDNA extraction and purification. Lastly, cfDNA was amplified using a low-power, plasmonic polymerase chain reaction (PCR) system. Using fluorescent-labeled beads, we demonstrated that the separation efficiency for cells was 99% and the mixing efficiency for purification of cfDNA was 94%. Captured cfDNA could be successfully amplified by PCR, as demonstrated by gel electrophoresis. We confirmed that the limit of detection of our microfluidic system was 10 ng/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Leon, S.A., Shapiro, B., Sklaroff, D.M. & Yaros, M. J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res.37, 646–650 (1977).

    CAS  PubMed  Google Scholar 

  2. Breitbach, S., Tug, S. & Simon, P. Circulating cell-free DNA. Sports Med.42, 565–586 (2012).

    Article  Google Scholar 

  3. Gormally, E., Caboux, E., Vineis, P. & Hainaut, P. Circulating free DNA in plasma or serum as biomarker of carcinogenesis: Practical aspects and biological significance. Mutat. Res.635, 105–117 (2007).

    Article  CAS  Google Scholar 

  4. Volik, S., Alcaide, M., Morin, R.D. & Collins, C. Cell-free DNA (cfDNA): Clinical significance and utility in cancer shaped by emerging technologies. Mol. Cancer Res.14, 898–908 (2016).

    Article  CAS  Google Scholar 

  5. Jen, J., Wu, L. & Sidransky, D. An overview on the isolation and analysis of circulating tumor DNA in plasma and serum. Ann. N.Y. Acad. Sci.906, 8–12 (2000).

    Article  CAS  Google Scholar 

  6. Shapiro, B., Chakrabarty, M., Cohn, E.M. & Leon, S.A. Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer51, 2116–2120 (1983).

    Article  CAS  Google Scholar 

  7. Fournié, G.J., Gayral-Taminh, M., Bouché, J.-P. & Conté, J.J. Recovery of nanogram quantities of DNA from plasma and quantitative measurement using labeling by nick translation. Anal. Biochem.158, 250–256 (1986).

    Article  Google Scholar 

  8. Marzese, D.M., Hirose, H. & Hoon, D.S.B. Diagnostic and prognostic value of circulating tumor-related DNA in cancer patients. Expert Rev. Mol. Diagn.13, 827–844 (2013).

    Article  CAS  Google Scholar 

  9. Ahrberg, C.D., Choi, J.W. & Chung, B.G. Droplet-based synthesis of homogeneous magnetic iron oxide nanoparticles. Beilstein J. Nanotechnol.9, 2413–2420 (2018).

    Article  CAS  Google Scholar 

  10. Lin, W.-Y., Wang, Y., Wang, S. & Tseng, H.-R. Integrated microfluidic reactors. Nano Today4, 470–481 (2009).

    Article  CAS  Google Scholar 

  11. Atalay, Y.T., Vermeir, S., Witters, D., Vergauwe, N., Verbruggen, B., Verboven, P., Nicolaï, B.M. & Lammertyn, J. Microfluidic analytical systems for food analysis. Trends Food Sci. Technol.22, 386–404 (2011).

    Article  CAS  Google Scholar 

  12. Ahrberg, C.D., Manz, A. & Chung, B.G. Polymerase chain reaction in microfluidic devices. Lab Chip16, 3866–3884 (2016).

    Article  CAS  Google Scholar 

  13. Shin, S., Kim, B., Kim, Y.-J. & Choi, S. Integrated microfluidic pneumatic circuit for point-of-care molecular diagnostics. Biosens. Bioelectron.133, 169–176 (2019).

    Article  CAS  Google Scholar 

  14. Chung, Y.-C., Jan, M.-S., Lin, Y.-C., Lin, J.-H., Cheng, W.-C. & Fan, C.-Y. Microfluidic chip for high efficiency DNA extraction. Lab Chip4, 141–147 (2004).

    Article  CAS  Google Scholar 

  15. Kim, J. & Gale, B.K. Microfluidic DNA extraction using a patterned aluminum oxide membrane. MOEMS-MEMS 2006 Micro and Nanofabrication, 6112 (2006).

  16. Cao, W., Easley, C.J., Ferrance, J.P. & Landers, J.P. Chitosan as a Polymer for pH-Induced DNA Capture in a Totally Aqueous System. Anal. Chem.78, 7222–7228 (2006).

    Article  CAS  Google Scholar 

  17. Arca, M., Ladd, A.J.C. & Butler, J.E. Electro-hydrodynamic concentration of genomic length DNA. Soft Matter12, 6975–6984 (2016).

    Article  CAS  Google Scholar 

  18. Kim, C.-J., Park, J., Sunkara, V., Kim, T.-H., Lee, Y., Lee, K., Kim, M.-H. & Cho, Y.-K. Fully automated, on-site isolation of cfDNA from whole blood for cancer therapy monitoring. Lab Chip18, 1320–1329 (2018).

    Article  Google Scholar 

  19. Campos, C.D.M., Gamage, S.S.T., Jackson, J.M., Witek, M.A., Park, D.S., Murphy, M.C., Godwin, A.K. & Soper, S.A. Microfluidic-based solid phase extraction of cell free DNA. Lab Chip18, 3459–3470 (2018).

    Article  CAS  Google Scholar 

  20. Yang, J., Selvaganapathy, P.R., Gould, T.J., Dwivedi, D.J., Liu, D., Fox-Robichaud, A.E. & Liaw, P.C. A microfluidic device for rapid quantification of cellfree DNA in patients with severe sepsis. Lab Chip15, 3925–3933 (2015).

    Article  CAS  Google Scholar 

  21. Ahrberg, C.D., Manz, A. & Neužil, P. Palm-Sized Device for Point-of-Care Ebola Detection. Anal. Chem.88, 4803–4807 (2016).

    Article  CAS  Google Scholar 

  22. Xu, J., Lv, X., Wei, Y., Zhang, L., Li, R., Deng, Y. & Xu, X. Air bubble resistant and disposable microPCR chip with a portable and programmable device for forensic test. Sens. Actuators, B212, 472–480 (2015).

    Article  CAS  Google Scholar 

  23. Li, Z., Zhao, Y., Zhang, D., Zhuang, S. & Yamaguchi, Y. The development of a portable buoyancy-driven PCR system and its evaluation by capillary electrophoresis. Sens. Actuators, B230, 779–784 (2016).

    Article  CAS  Google Scholar 

  24. Warden, A.R., Liu, W., Chen, H. & Ding, X. Portable Infrared Isothermal PCR Platform for Multiple Sexually Transmitted Diseases Strand Detection. Anal. Chem.90, 11760–11763 (2018).

    Article  CAS  Google Scholar 

  25. Schwarzenbach, H., Hoon, D.S.B. & Pantel, K. Cellfree nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer.11, 426 (2011).

    Article  CAS  Google Scholar 

  26. Yuan, D., Zhang, J., Sluyter, R., Zhao, Q., Yan, S., Alici, G. & Li, W. Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays. Lab Chip16, 3919–3928 (2016).

    Article  CAS  Google Scholar 

  27. Yuan, D., Zhang, J., Yan, S., Pan, C., Alici, G., Nguyen, N.T. & Li, W.H. Dean-flow-coupled elastoinertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays. Biomicrofluidics9, 044108 (2015).

    Article  CAS  Google Scholar 

  28. Pierigè, F., Serafini, S., Rossi, L. & Magnani, M. Cell-based drug delivery. Adv. Drug Del. Rev.60, 286–295 (2008).

    Article  Google Scholar 

  29. Lippi, G., Plebani, M., Di Somma, S. & Cervellin, G. Hemolyzed specimens: a major challenge for emergency departments and clinical laboratories. Crit. Rev. Clin. Lab. Sci.48, 143–153 (2011).

    Article  Google Scholar 

  30. Xiang, N., Dai, Q., Han, Y. & Ni, Z. Circular-channel particle focuser utilizing viscoelastic focusing. Microfluid. Nanofluid.23, 16 (2019).

    Article  Google Scholar 

  31. Giudice, F.D., Romeo, G., D’Avino, G., Greco, F., Netti, P.A. & Maffettone, P.L. Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel. Lab Chip13, 4263–4271 (2013).

    Article  Google Scholar 

  32. Seo, K.W., Byeon, H.J., Huh, H.K. & Lee, S.J. Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids. RSC Adv.4, 3512–3520 (2014).

    Article  CAS  Google Scholar 

  33. Hong, C.-C., Choi, J.-W. & Ahn, C.H. A novel inplane passive microfluidic mixer with modified Tesla structures. Lab Chip4, 109–113 (2004).

    Article  CAS  Google Scholar 

  34. Yang, A.-S., Chuang, F.-C., Chen, C.-K., Lee, M.-H., Chen, S.-W., Su, T.-L. & Yang, Y.-C. A highperformance micromixer using three-dimensional Tesla structures for bio-applications. Chem. Eng. J.263, 444–451 (2015).

    Article  CAS  Google Scholar 

  35. Bhagat, A.A.S. & Papautsky, I. Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J. Micromech. Microeng.18, 085005 (2008).

    Article  Google Scholar 

  36. Yang, S., Kim, J.Y., Lee, S.J., Lee, S.S. & Kim, J.M. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip11, 266–273 (2011).

    Article  CAS  Google Scholar 

  37. Schwarzenbach, H., Hoon, D.S.B. & Pantel, K. Cellfree nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer.11, 426–437 (2011).

    Article  CAS  Google Scholar 

  38. Son, J.H., Cho, B., Hong, S.G., Lee, S.H., Hoxha, O., Haack, A.J. & Lee, L.P. Ultrafast photonic PCR. Light: Sci. Appl.4, e280 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation funded by the Ministry of Science and ICT of Korea (Grant number 2015M3A9D7030461, 2016M3A7B4910652, 2017R 1C1B3012221, 2015M3D3A1A01064926, 2019M3A 9H2032547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Geun Chung.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kye, H.G., Ahrberg, C.D., Park, B.S. et al. Separation, Purification, and Detection of cfDNA in a Microfluidic Device. BioChip J 14, 195–203 (2020). https://doi.org/10.1007/s13206-020-4208-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-020-4208-1

Keywords

Navigation