Skip to main content
Log in

Detection of Bacillus Cereus Using Bioluminescence Assay with Cell Wall-binding Domain Conjugated Magnetic Nanoparticles

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Bacillus cereus can cause blood infections (i.e., sepsis). Its early detection is very important for treating patients. However, an antibody with high binding affinity to B. cereus is not currently available. Bacteriophage cell wall-binding domain (CBD) has strong and specific binding affinity to B. cereus. Here, we report the improvement in the sensitivity of an ATP bioluminescence assay for B. cereus detection using CBD-conjugated magnetic nanoparticles (CBDMNPs). The assay was able to detect as few as 10 colony forming units (CFU) per mL and 103 CFU per mL in buffer and blood. CBD-MNPs did not show any cross-reactivity with other microorganisms. These results demonstrate the feasibility of the ATP assay for the detection of B. cereus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sutherland, A. et al. Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis. Crit. Care 15, R149 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ikeda, M. et al. Clinical characteristics and antimicrobial susceptibility of Bacillus cereus blood stream infections. Ann. Clin. Microbiol. Antimicrob. 14, 43 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goto, M. & Al-Hasan, M. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin. Microbiol. Infect. 19, 501–509 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Angus, D.C. et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1303–1310 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Shen, H. et al. Rapid and selective detection of pathogenic bacteria in bloodstream infections with aptamer-based recognition. ACS Appl. Mater. Interfaces 8, 19371–19378 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Yagupsky, P. & Nolte, F. Quantitative aspects of septicemia. Clin. Microbiol. Rev. 3, 269–279 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reier-Nilsen, T., Farstad, T., Nakstad, B., Lauvrak, V. & Steinbakk, M. Comparison of broad range 16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study. BMC Pediatr. 9, 5 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmed, A., Rushworth, J.V., Hirst, N.A. & Millner, P.A. Biosensors for whole-cell bacterial detection. Clin. Microbiol. Rev. 27, 631–646 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Toh, S.Y., Citartan, M., Gopinath, S.C. & Tang, T.-H. Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens. Bioelectron. 64, 392–403 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, A. & Yang, S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 71, 230–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Kong, M. et al. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. Eur. Biophys. J. 44, 437–446 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Lim, T., Lee, S.Y., Yang, J., Hwang, S.Y. & Ahn, Y. Microfluidic biochips for simple impedimetric detection of thrombin based on label-free DNA aptamers. BioChip J. 11, 109–115 (2017).

    Article  CAS  Google Scholar 

  13. Joshi, R. et al. Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol. Cell. Probes 23, 20–28 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Kretzer, J.W. et al. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl. Environ. Microbiol. 73, 1992–2000 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kong, M., Shin, J.H., Heu, S., Park, J.-K. & Ryu, S. Lateral flow assay-based bacterial detection using engineered cell wall binding domains of a phage endolysin. Biosens. Bioelectron. 96, 173–177 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Molin, O., Nilsson, L. & Anséhn, S. Rapid detection of bacterial growth in blood cultures by bioluminescent assay of bacterial ATP. J. Clin. Microbiol. 18, 521–525 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nilsson, L., Molin, Ö. & Ånséhn, S. Bioluminescent assay of bacterial ATP for rapid detection of bacterial growth in clinical blood cultures. Luminescence 3, 101–104 (1989).

    CAS  Google Scholar 

  18. Park, C. et al. 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J. Microbiol. Methods 132, 128–133 (2017).

    CAS  Google Scholar 

  19. Arroyo, M.G. et al. Effectiveness of ATP bioluminescence assay for presumptive identification of microorganisms in hospital water sources. BMC Infect. Dis. 17, 458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wright, D., Chapman, P. & Siddons, C. Immunomagnetic separation as a sensitive method for isolating Escherichia coli O157 from food samples. Epidemiol. Infect. 113, 31–39 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Skjerve, E. & Olsvik, Ø. Immunomagnetic separation of Salmonella from foods. Int. J. Food Microbiol. 14, 11–17 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Aydin, M. et al. Rapid and Sensitive Detection of Escherichia coli O157:H7 in Milk and Ground Beef Using Magnetic Bead–Based Immunoassay Coupled with Tyramide Signal Amplification. J. Food Prot. 77, 100–105 (2014).

    Article  PubMed  Google Scholar 

  23. Lee, J., Park, C., Kim, Y. & Park, S. Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment. BioChip J. 11, 287–293 (2017).

    Article  CAS  Google Scholar 

  24. Ganesh, I. et al. An integrated microfluidic PCR system with immunomagnetic nanoparticles for the detection of bacterial pathogens. Biomed. Microdevices 18, 116 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Kong, M., Kim, M. & Ryu, S. Complete genome sequence of Bacillus cereus bacteriophage PBC1. J. Virol. 86, 6379–6380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pal, S., Alocilja, E.C. & Downes, F.P. Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens. Bioelectron. 22, 2329–2336 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Oda, M. et al. Role of sphingomyelinase in infectious diseases caused by Bacillus cereus. PLoS ONE 7, e38054 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mastronardi, C., Yang, L., Halpenny, M., Toye, B. & Ramírez-Arcos, S. Evaluation of the sterility testing process of hematopoietic stem cells at Canadian Blood Services. Transfusion 52, 1778–1784 (2012).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungsu Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., Kong, M., Lee, JH. et al. Detection of Bacillus Cereus Using Bioluminescence Assay with Cell Wall-binding Domain Conjugated Magnetic Nanoparticles. BioChip J 12, 287–293 (2018). https://doi.org/10.1007/s13206-018-2408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-018-2408-8

Keywords

Navigation