Skip to main content
Log in

A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Enhanced motility in malignant cell is one hallmark of tumor metastasis. The clinical reality is that each of us responds differently to treatment, driving a significant interest in the development of therapies that are “right” to the individual. A biomedical analytical tool with low-cost, sensitive and short assaytime is critical for personalized medicine. Herein, a cost-effective and user-friendly microfluidic device was developed for studying of cell migration. A two-step photolithography procedure was conducted to reveal microchannels and microchambers with different depth. The PDMS/glass slide hydride device was assembled between a polymethyl methacrylate (PMMA) clamp which can adjust the pressure imposed on the device to control the fluid communication between mainchambers, thus identical wound (cell-free space) with clear edge can be easily formed within channel without extra chemical, mechanical force, fluidic manipulation and sophisticated microstructure. Using this device, we evaluated the combinatory of BRAFV600E inhibitor vemurafenib and epidermal growth factor receptor (EGFR) inhibitor gefitinib in inhibiting of melanoma cell migration with only 20 μL cell consumption, highlighting its potential in assaying rare clinical biopsy for personalized medicine. In addition, the on-chip migration model followed strictly follow the principle of conventional in vitro scratch/wound healing assay, facilitating it is translation to biologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lauffenburger, D.A. & Horwitz, A.F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  2. Wang, J., Petefish, J.W., Hillier, A.C. & Schneider, I.C. Epitaxially Grown Collagen Fibrils Reveal Diversity in Contact Guidance Behavior among Cancer Cells. Langmuir 31, 307–314 (2015).

    Article  CAS  Google Scholar 

  3. Hou, Y., Rodriguez, L.L., Wang, J. & Schneider, I.C. Collagen attachment to the substrate controls cell clustering through migration. Phys. Biol. 11, 056007 (2014).

    Article  Google Scholar 

  4. Eccles, S.A., Box, C. & Court, W. Cell migration/invasion assays and their application in cancer drug discovery. Biotechnol. Annu. Rev. 11, 391–421 (2005).

    Article  CAS  Google Scholar 

  5. Liang, C.C., Park, A.Y. & Guan, J.L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2, 329–333 (2007).

    Article  CAS  Google Scholar 

  6. Riahi, R., Yang, Y., Zhang, D.D. & Wong, P.K. Advances in wound-healing assays for probing collective cell migration. J. Lab. Autom. 17, 59–65 (2012).

    Article  CAS  Google Scholar 

  7. Kunze, A., Pushkarsky, I., Kittur, H. & Di Carlo, D. Research highlights: measuring and manipulating cell migration. Lab Chip 14, 4117–4121 (2014).

    Article  CAS  Google Scholar 

  8. Boneschansker, L., Yan, J., Wong, E., Briscoe, D.M. & Irimia, D. Microfluidic platform for the quantitative analysis of leukocyte migration signatures. Nat. Commun. 5, 4787 (2014).

    Article  CAS  Google Scholar 

  9. Lamberti, G. et al. Bioinspired microfluidic assay for in vitro modeling of leukocyte-endothelium interactions. Anal. Chem. 86, 8344–8351 (2014).

    Article  CAS  Google Scholar 

  10. Cheng, S.Y. et al. A hydrogel-based microfluidic device for the studies of directed cell migration. Lab Chip 7, 763–769 (2007).

    Article  CAS  Google Scholar 

  11. Nie, F.Q. et al. On-chip cell migration assay using microfluidic channels. Biomaterials 28, 4017–4022 (2007).

    Article  CAS  Google Scholar 

  12. van der Meer, A.D., Vermeul, K., Poot, A.A., Feijen, J. & Vermes, I. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 298, H719–725 (2010).

    Article  Google Scholar 

  13. Jowhar, D., Wright, G., Samson, P.C., Wikswo, J.P. & Janetopoulos, C. Open access microfluidic device for the study of cell migration during chemotaxis. Integr. Biol. (Camb) 2, 648–658 (2010).

    Article  CAS  Google Scholar 

  14. Zervantonakis, I.K. et al. Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. USA 109, 13515–13520 (2012).

    Article  CAS  Google Scholar 

  15. Shin, M.K., Kim, S.K. & Jung, H. Integration of intraand extravasation in one cell-based microfluidic chip for the study of cancer metastasis. Lab Chip 11, 3880–3887 (2011).

    Article  CAS  Google Scholar 

  16. Jeong, G.S. et al. Microfluidic assay of endothelial cell migration in 3D interpenetrating polymer semi-network HA-Collagen hydrogel. Biomed. Microdevices 13, 717–723 (2011).

    Article  CAS  Google Scholar 

  17. Chaw, K.C., Manimaran, M., Tay, E.H. & Swaminathan, S. Multi-step microfluidic device for studying cancer metastasis. Lab Chip 7, 1041–1047 (2007).

    Article  CAS  Google Scholar 

  18. Chaw, K.C., Manimaran, M., Tay, F.E. & Swaminathan, S. Matrigel coated polydimethylsiloxane based microfluidic devices for studying metastatic and non-metastatic cancer cell invasion and migration. Biomed. Microdevices 9, 597–602 (2007).

    Article  CAS  Google Scholar 

  19. Wu, J., Wu, X. & Lin, F. Recent developments in microfluidics-based chemotaxis studies. Lab Chip 13, 2484–2499 (2013).

    Article  CAS  Google Scholar 

  20. Zhang, M., Li, H., Ma, H. & Qin, J. A simple microfluidic strategy for cell migration assay in an in vitro wound-healing model. Wound Repair Regen. 21, 897–903 (2013).

    Article  Google Scholar 

  21. Zheng, C. et al. Live cell imaging analysis of the epigenetic regulation of the human endothelial cell migration at single-cell resolution. Lab Chip 12, 3063–3072 (2012).

    Article  CAS  Google Scholar 

  22. Yu, L. et al. The CSPG4-specific monoclonal antibody enhances and prolongs the effects of the BRAF inhibitor in melanoma cells. Immunol. Res. 50, 294–302 (2011).

    Article  CAS  Google Scholar 

  23. Nazarian, R. et al. Melanomas acquire resistance to B-RAF (V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  Google Scholar 

  24. Flaherty, K.T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  Google Scholar 

  25. Chapman, P.B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. McArthur, N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  Google Scholar 

  26. Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF (V600E) inhibition through feedback activation of EGFR. Nature 483, 100–103 (2012).

    Article  CAS  Google Scholar 

  27. Patel, S.P. et al. A phase II study of gefitinib in patients with metastatic melanoma. Melanoma Res. 21, 357–363 (2011).

    Article  CAS  Google Scholar 

  28. Djerf, E.A. et al. ErbB receptor tyrosine kinases contribute to proliferation of malignant melanoma cells: inhibition by gefitinib (ZD1839). Melanoma Res. 19, 156–166 (2009).

    Article  CAS  Google Scholar 

  29. Girotti, M.R. et al. Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discovery 3, 158–167 (2013).

    Article  CAS  Google Scholar 

  30. Gross, A. et al. Expression and activity of EGFR in human cutaneous melanoma cell lines and influence of vemurafenib on the EGFR pathway. Target. Oncol. 10, 77–84 (2015).

    Article  Google Scholar 

  31. Sun, C. et al. Reversible and adaptive resistance to BRAF (V600E) inhibition in melanoma. Nature 508, 118–122 (2014).

    Article  CAS  Google Scholar 

  32. Ong, F.S. et al. Personalized medicine and pharmacogenetic biomarkers: progress in molecular oncology testing. Expert Rev. Mol. Diagn. 12, 593–602 (2012).

    Article  CAS  Google Scholar 

  33. Jackson, S.E. & Chester, J.D. Personalised cancer medicine. Int. J. Cancer 201, 137, 262–6 (2015)

    Article  CAS  Google Scholar 

  34. Joseph, E.W. et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. USA 107, 14903–14908 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, A., Tian, Y., Shi, Z. et al. A cost-effective microdevice bridges microfluidic and conventional in vitro scratch / wound-healing assay for personalized therapy validation. BioChip J 10, 56–64 (2016). https://doi.org/10.1007/s13206-016-0108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-016-0108-9

Keywords

Navigation