Skip to main content
Log in

Dynamic wetting in microfluidic droplet formation

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The extent to which the carrier fluid wets the walls of a microchannel is crucial in the droplet formation process for segmented flow microfluidic applications and can be influenced by the use of surfactants. Surfactants dynamically modify the microchannel surface leading to stabilization of the two phase interface, affecting the droplet formation process. An experimental study of the influence of hydrophobic surfactant (Span 80) during the formation of water-inoil droplets in a T-shaped microchannel geometry is presented and the wetting properties of the microchannel walls were characterized. The range of data to be analyzed on the microscale is estimated from the macroscopic interfacial tension and contact angle measurements. The critical micelle concentration (CMC) level at the microscale was estimated by observing the trend of droplet length variation with concentration of surfactant in a microchannel. Microchannels used in this work were fabricated using softlithography methods and bonded using a custom-made plasma bonding setup that does not require an ultra high vacuum chamber and hence saves the fabrication cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chin, C.D., Linder, V. & Sia, S.K. Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab Chip 7, 41–57 (2007).

    Article  CAS  Google Scholar 

  2. Wu, M.H., Huang, S.B. & Lee, G.B. Microfluidic cell culture systems for drug research. Lab Chip 10, 939–956 (2010).

    Article  CAS  Google Scholar 

  3. Khademhosseini, A., Langer, R., Borenstein, J. & Vacanti, J.P. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103, 2480–2487 (2006).

    Article  CAS  Google Scholar 

  4. Qasaimeh, M.A., Ricoult, S.G. & Juncker, D. Microfluidic probes for use in life sciences and medicine. Lab Chip 13, 40–50 (2013).

    Article  CAS  Google Scholar 

  5. Gernaey, K. et al. Monitoring and control of microbioreactors: An expert opinion on development needs. Biotechnol. J. 7, 1308–1314 (2012).

    Article  CAS  Google Scholar 

  6. Sung, J.H. et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip 13, 1201–1212 (2013).

    Article  CAS  Google Scholar 

  7. Mandenius, C.-F. et al. Toward preclinical predictive drug testing for metabolism and hepatotoxicity by using in vitro models derived from human embryonic stem cells and human cell lines: a report on the Vitrocellomics EU-project. Altern. Lab Anim. (ATLA) 39, 147–171 (2011).

    CAS  Google Scholar 

  8. Khetani, S.R. & Bhatia, S.N. Microscale culture of human liver cells for drug development. Nat. Biotechnol. 26, 120–126 (2008).

    Article  CAS  Google Scholar 

  9. Lee, P.J., Hung, P.J. & Lee, L.P. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97, 1340–1346 (2007).

    Article  CAS  Google Scholar 

  10. Fritzsche, M., Fredriksson, J.M., Carlsson, M. & Mandenius, C.-F. A cell-based sensor system for toxicity testing using multiwavelength fluorescence spectroscopy. Anal. Biochem. 387, 271–275 (2009).

    Article  CAS  Google Scholar 

  11. Greif, D., Galla, L., Ros, A. & Anselmetti, D. Single cell analysis in full body quartz glass chips with native UV laser-induced fluorescence detection. J. Chromatogr. A 1206, 83–88 (2008).

    Article  CAS  Google Scholar 

  12. Schulze, P., Ludwig, M., Kohler, F. & Belder, D. Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis. Anal. Chem. 77, 1325–1329 (2005).

    Article  CAS  Google Scholar 

  13. Kim, L., Toh, Y.-C., Voldman, J. & Yu, H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7, 681–694 (2007).

    Article  CAS  Google Scholar 

  14. Baudoin, R., Griscom, L., Prot, J.M., Legallais, C. & Leclerc, E. Behavior of HepG2/C3A cell cultures in a microfluidic bioreactor. Biochem. Eng. J. 53, 172–181 (2011).

    Article  CAS  Google Scholar 

  15. Leclerc, E., Sakai, Y. & Fujii, T. Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed. Microdevices 5, 109–114 (2003).

    Article  CAS  Google Scholar 

  16. Toh, Y.-C. et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip 7, 302–309 (2007).

    Article  CAS  Google Scholar 

  17. Leclerc, E., Sakai, Y. & Fujii, T. Perfusion culture of fetal human hepatocytes in microfluidic environments. Biochem. Eng. J. 20, 143–148 (2004).

    Article  CAS  Google Scholar 

  18. Sung, J.H. & Shuler, M.L. In vitro microscale systems for systematic drug toxicity study. Bioproc. Biosyst. Eng. 33, 5–19 (2010).

    Article  CAS  Google Scholar 

  19. Ma, B., Zhang, G., Qin, J. & Lin, B. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9, 232–238 (2009)

    Article  CAS  Google Scholar 

  20. Trujillo, T.C. & Nolan, P.E. Antiarrhythmic agents: drug interactions of clinical significance. Drug Safety 23, 509–532 (2000).

    Article  CAS  Google Scholar 

  21. De Bartolo, L. et al. Long-term maintenance of human hepatocytes in oxygen-permeable membrane bioreactor. Biomaterials 27, 4794–4803 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shazia Bashir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, S., Solvas, X.C.i., Bashir, M. et al. Dynamic wetting in microfluidic droplet formation. BioChip J 8, 122–128 (2014). https://doi.org/10.1007/s13206-014-8207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-014-8207-y

Keywords

Navigation