Skip to main content
Log in

Chlorpyrifos degradation efficiency of Bacillus sp. laccase immobilized on iron magnetic nanoparticles

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study explored the immobilization of laccase onto iron magnetic nanoparticles (MNPs) to enhance its enzymatic properties and applications. The immobilization process was optimized using Box–Behnken design (BBD). BBD showed significance towards the quadratic model with experimental data. Maximum laccase activity recovery (99%) of the predicted model was observed at 0.75 mg/mL of laccase concentration, 200 mg/mL of MNPs, 0.3% cross linking with carbodiimide, and 3 h of cross-linking time. The magnetization activity of MNPs (8 emu/g) and the immobilized laccase with MNPs (4 emu/g) was analyzed using vibrating sample magnetometer (VSM). Maximum activity of immobilized laccase was observed at pH 7.0 and 55 °C. The immobilized laccase has greater stability (100 h) and significant chlorpyrifos (pesticide) degradation activity. High-performance liquid chromatography (HPLC) results confirmed the degraded metabolic products of chlorpyrifos. In all, the immobilized laccase was superior to free laccase, showing promising structural and application characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed I, Iqbal HM, Dhama K (2017) Enzyme-based biodegradation of hazardous pollutants an overview. J Exp Biol Agric Sci 5:402–411

    CAS  Google Scholar 

  • Amin F, Nawaz H, Muhammad B, Bilal M (2016) Improvement of activity, thermo-stability and fruit juice clarification characteristics of fungal exo-polygalacturonase. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2016.10.086

    Article  PubMed  Google Scholar 

  • Antecka K, Zdarta J, Siwińska-Stefańska K, Sztuk G, Jankowska E, Oleskowicz-Popiel P, Jesionowski T (2018) Synergistic degradation of dye wastewaters using binary or ternary oxide systems with immobilized laccase. Catalysts 8:402

    Google Scholar 

  • Arsalan A, Younus H (2018) Enzymes and nanoparticles: modulation of enzymatic activity via nanoparticles. Int J Biol Macromol 118:1833–1847

    CAS  PubMed  Google Scholar 

  • Bilal M, Asgher M, Hafiz MN, Hu H, Wang W, Zhang X (2017a) Bio-catalytic performance and dye-based industrial pollutants degradation potential of agarose-immobilized MnP using a Packed Bed Reactor System. Int J Biol Macromol 102:582–590

    CAS  PubMed  Google Scholar 

  • Bilal M, Asgher M, Parra-Saldivar R, Hu H, Wang W, Zhang X, Iqbal HM (2017b) Immobilized ligninolytic enzymes: an innovative and environmental responsive technology to tackle dye-based industrial pollutant a review. Sci Total Environ 576:646–659

    CAS  PubMed  Google Scholar 

  • Bilal M, Rasheed T, Zhao Y, Iqbal HM (2019) Agarose chitosan hydrogel immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int J Biol Macromol 124:742–749

    CAS  PubMed  Google Scholar 

  • Chen YY, Stemple B, Kumar M, Wei N (2016) Cell surface display fungal laccase as a renewable biocatalyst for degradation of persistent micro pollutants bisphenol A and sulfamethoxazole. Environ Sci Technol 50:8799–8808

    CAS  PubMed  Google Scholar 

  • Chiou SH, Wu WT (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25:197–204

    CAS  PubMed  Google Scholar 

  • Das A, Singh J, Yogalakshmi KN (2017) Laccase immobilized magnetic iron nanoparticles: fabrications and its performance evaluation in chlorpyrifos degradation. Int Biodeterior Biodegrad 117:183–189

    CAS  Google Scholar 

  • Das A, Jaswal V, Yogalakshmi KN (2020) Degradation of chlorpyrifos in soil using laccase immobilized iron oxide nanoparticles and their competent role in deterring the mobility of chlorpyrifos. Chemosphere 246:125676

    CAS  PubMed  Google Scholar 

  • Dyal A, Loos KM, Noto M, Chang SW, Spagnoli C, Shafi KVPM, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosalipase immobilized on g-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125:1684–1685

    CAS  PubMed  Google Scholar 

  • Fortes C, Daniel-da-Silva AL, Xavier MRB, Tavares PM (2017) Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions. Chem Eng Process 117:1–8

    CAS  Google Scholar 

  • Govarthanan M, Jeon C-H, Jeon Y-H, Kwon J-H, Bae H, Kim W (2020) Non-toxic nano approach for wastewater treatment using Chlorella vulgaris exopolysaccharides immobilized in iron-magnetic nanoparticles. Int J Biol Macromol 162:1241–1249

    CAS  PubMed  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    CAS  PubMed  Google Scholar 

  • Gursharan S, Satinderpal K, Madhu K, Shailendramar K (2019) Biobleaching for pulp and paper industry in India: emerging enzyme technology. Biocatal Agric Biotechnol 17:558–565

    Google Scholar 

  • Halim SFA, Kamaruddin AH, Fernando WJN (2009) Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresour Technol 100:710–716

    CAS  PubMed  Google Scholar 

  • Huang D, Liu L, Zeng G, Xu P, Huang C, Deng L, Wang R, Wan J (2017) The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal contaminated sediment. Chemosphere 174:545–553

    CAS  PubMed  Google Scholar 

  • Jiang C, Yin L, Wen X, Du C, Wu L, Long Y, Liu Y, Ma Y, Yin Q, Zhou Z, Pan H (2018) Micro plastics in sediment and surface water of west dongting lake and south dongting lake: abundance, source and composition. Int J Environ Res Public Health 15:2164

    CAS  PubMed Central  Google Scholar 

  • Jořenek M, Zajoncová L (2015) Immobilization of laccase on magnetic carriers and its use in decolorization of dyes. Chem. Biochem Eng 29:457–466

  • Jordan C, Ahmed E, Cerasela Z (2018) Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts 8:238

    Google Scholar 

  • Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2011) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123:707–716

    Google Scholar 

  • Krishna SH, Sattur AP, Karanth NG (2001) Lipase catalyzed synthesis of isoamyl isobutyrate optimization using a central composite rotatable design. Process Biochem 37:9–16

    Google Scholar 

  • Kumar S, Kaushik G, Dar M, Nimesh S, Opez-chuken U, Villarreal-chiu JF (2018) Microbial degradation of organophosphate pesticides: a review. Pedosphere 28:190–208

    Google Scholar 

  • Kunamneni A, Plou FJ, Ballesteros A, Alcalde M (2008) Laccases and their applications: a patent review. Recent Pat Biotechnol 2:10–24

  • Kupski L, Salcedo GM, Caldas SS, Souza TD, Furlong EB, Primel EG (2019) Optimization of a laccase-mediator system with natural redox-mediating compounds for pesticide removal. Environ Sci Pollut Res 26:5131–5139

    CAS  Google Scholar 

  • Lai C, Zhang M, Li B, Huang D, Zeng G, Qin L, Liu X, Yi H, Cheng M, Li L, Chen Z, Chen L (2019) Fabrication of CuS/BiVO4 (0 4 0) binary hetero junction photo catalysts with enhanced photo catalytic activity for ciprofloxacin degradation and mechanism insight. Chem Eng J 358:891–902

    CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    CAS  PubMed  Google Scholar 

  • Li Z (2018) Health risk characterization of maximum legal exposures for persistent organic pollutant (POP) pesticides in residential soil: an analysis. J Environ Manag 205:163–173

    CAS  Google Scholar 

  • Lin D, Pan B, Zhu L, Xing B (2007) Characterization and phenanthrene sorption of tea leaf powders. J Agric Food Chem 55:5718–5724

    CAS  PubMed  Google Scholar 

  • Lin J, Wen Q, Chen S, Le X, Zhou X, Huang L (2017) Synthesis of amine-functionalized Fe3O4@C nanoparticles for laccase immobilization. Int J Biol Macromol 96:377–383

    CAS  PubMed  Google Scholar 

  • Liu Y, Zeng Z, Zeng G, Tang L, Pang Y, Li Z, Liu C, Lei X, Wua M, Ren P, Liu Z, Chen M, Xie G (2012) Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour Technol 115:21–26

    CAS  PubMed  Google Scholar 

  • Mahdavi M, Ahmad MB, Haron J, MdNamvar F, Nadi B, Rahman MZ, Amin J (2013) Synthesis, surface modification and characterization of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18:7533–7548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maqbool Z, Hussain S, Imran M, Mahmood F, Shahzad T, Ahmed Z, Muzammil S (2016) Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environ Sci Pollut Res 23:16904–16925

    Google Scholar 

  • Mir-Tutusaus JA, Baccar R, Caminal G, Sarrà M (2018) Can white-rot fungi be a real wastewater treatment alternative for organic micro pollutants removal? A review. Water Res 138:137–151

    CAS  PubMed  Google Scholar 

  • Nandhini NT, Rajeshkumar S, Mythili R (2019) The possible mechanism of eco-friendly synthesized nanoparticles on hazardous dyes degradation. Biocatal Agric Biotechnol 19:10113

    Google Scholar 

  • Pereira LC, Souza AO, Bernardes MFF, Pazin M, Tasso MJ, Pereira PH, Dorta DJ (2015) A perspective on the potential risks of emerging contaminants to human and environmental health. Environ Sci Pollut Res 22:13800–13823

    CAS  Google Scholar 

  • Quiroga E, Illanes CO, Ochoa NA, Barberis S (2011) Performance improvement of araujia in, a cystein phytoprotease, by immobilization within calcium alginate beads. Process Biochem 46:1029–1034

    CAS  Google Scholar 

  • Ramírez-Montoya LA, Hernandez-Montoya V, Montes Moran MA, Jauregui Rincon J, Cervantes FJ (2015) Decolorization of dyes with different molecular properties using free and immobilized laccases from Trametes versicolor. J Mol Liq 212:3037

    Google Scholar 

  • Selvam K, Govarthanan M, Senbagam D, Kamala Kannan S, Senthilkumar B, Selvankumar T (2016) Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles. Chin J Catal 37:1891–1898

    CAS  Google Scholar 

  • Simonelli A, Basilicata P, Miraglia N, Castiglia L, Guadagni R, Acampora A, Sannolo N (2007) Analytical method validation for the evaluation of cutaneous occupational exposure to different chemical classes of pesticides. J Chromatogr B 860:26–33

    CAS  Google Scholar 

  • Soozanipour A, Taheri kafrani A, LandaraniIsfahani A (2015) Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability. Chem Eng J 270:235–243

    CAS  Google Scholar 

  • Srinivasan P, Selvankumar T, Kamala-Kannan S, Mythili R, Sengottaiyan A, Govarthanan M, Senthilkumar B, Selvam K (2019) Production and purification of laccase by Bacillus sp. using millet husks and its pesticide degradation application. 3 Biotech 9:396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vera M, Nyanhongo GS, Pellis A, Rivas BL, Guebitz GM (2019) Immobilization of Myceliophthora thermophila laccase on poly (glycidyl methacrylate) microspheres enhances the degradation of azinphos-methyl. J Appl Polym Sci 136:47417

    Google Scholar 

  • Villarreal-Chiu JF, Acosta-Cortes AG, Kumar S, Kaushik G (2017) Biological limitations on glyphosate biodegradation. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability, 9th edn. Springer, Cham, pp 179–201

    Google Scholar 

  • Wang J, Zhao G, Li Y, Liu X, Hou P (2013) Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl Microbiol Biotechnol 97:681–692

    CAS  PubMed  Google Scholar 

  • Wen X, Du C, Wan J, Zeng G, Huang D, Yin L, Deng R, Tan S, Zhang J (2019) Immobilizing laccase on kaolinite and its application in treatment of malachite green effluent with the coexistence of Cd (П). Chemosphere 217:843–850

    CAS  PubMed  Google Scholar 

  • Wu E, Li Y, Huang Q, Yang Z, Wei A, Qi Hu (2019) Laccase immobilization on amino functionalized magnetic metal organic framework for phenolic compound removal. Chemosphere 233:327–335

    CAS  PubMed  Google Scholar 

  • Zdarta J, Meyer AS, Jesionowski T, Pinelo M (2018) Developments in support materials for immobilization of oxidoreductases: a comprehensive review. Adv Colloid Interface Sci 258:1–20

    CAS  PubMed  Google Scholar 

  • Zeng S, Qin X, Xia L (2017) Degradation of the herbicide isoproturon by laccase mediator systems. Biochem Eng J 119:92–100

    CAS  Google Scholar 

  • Zheng F, Cui BK, Wu XJ, Meng G, Liu HX, Si J (2016) Immobilization of laccase onto chitosan beads to enhance its capability to degrade synthetic dyes. Int Biodeterior Biodegrad 110:69–78

    Google Scholar 

  • Ztrk N, Tabak A, Akgl S, Denizli A (2008) Reversible immobilization of catalase by using a novel bentonite-cysteine (Bent-Cys) micro composites affinity sorbents. Colloid Surf Physicochem Eng Asp 322:148–154

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by the PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), and the Department of Science and Technology, Government of India (DST-FIST sponsored-Ref. No. SR/ FST/College-232/2014). This research was supported by Kyungpook National University Bokhyeon Research Fund, 2017. This study was supported by Researchers Supporting Project number (RSP-2020/144), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Govarthanan, Woong Kim or K. Selvam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, P., Selvankumar, T., Paray, B.A. et al. Chlorpyrifos degradation efficiency of Bacillus sp. laccase immobilized on iron magnetic nanoparticles. 3 Biotech 10, 366 (2020). https://doi.org/10.1007/s13205-020-02363-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02363-6

Keywords

Navigation