Skip to main content
Log in

Rapid plant regeneration in industrially important Curcuma zedoaria revealing genetic and biochemical fidelity of the regenerants

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present investigation was carried out to establish an efficient and reproducible micropropagation protocol for the production of morphologically, genetically and chemically uniform plants of Curcuma zedoaria. Axillary bud explants of C. zedoaria were inoculated into MS basal medium supplemented with various combinations and concentrations of 6-benzyladenine (2.2–22.2 µM, BA), kinetin (2.3–23.2 µM, Kin), indole-3-acetic acid (2.9–11.4 µM, IAA), α-naphthalene acetic acid (2.7–10.2 µM, NAA) and adenine sulphate (33.9–203.6 µM, Ads). Almost 95% of rhizome buds sprouted on MS medium supplemented with 13.3 μM BA, 5.7 μM IAA and 63.9 μM Ads giving rise to an average of 12.89 ± 0.02 shoots within 6 weeks. However, the maximum number of roots (25.8 ± 0.07 roots per explant) was obtained on half strength MS medium supplemented with 7.4 µM of IBA after 4 weeks of inoculation. Morphological characteristics were similar in both conventionally propagated and micropropagated plants. Additionally, genetic homogeneity of in vitro plants was further confirmed through ISSR and flow cytometry analysis. A total of 27 ISSR primers were screened, out of which 13 ISSR primers generated 58 monomorphic and reproducible bands thereby confirming the genetic uniformity of obtained plants. The mean 2C DNA content of the mother plant (2.96 pg) was similar to that of in vitro derived plants (3.07 pg). Gas chromatography-mass spectrometry (GC–MS) analysis showed similarity in the qualitative profile of chemical constituents of essential oil and high-performance liquid chromatography analysis revealed no significant differences in curcumin content in the tissue culture regenerants and mother plants of C. zedoaria. Therefore, the present micropropagation protocol could be effectively employed to generate true to type plantlets of C. zedoaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Ahmad Z, Shahzad A, Sharma S, Parveen S (2018) Ex vitro rescue, physiochemical evaluation, secondary metabolite production and assessment of genetic stability using DNA based molecular markers in regenerated plants of Decalepis salicifolia (Bedd. ex Hook. f.) Venter. Plant Cell Tissue Organ Cult 132:497–510

    Article  CAS  Google Scholar 

  • Alatar AA, Faisal M, Abdel-Salam EM, Canto T, Saquib Q, Javed SB, El-Sheikh MA, Al-Khedhairy AA (2017) Efficient and reproducible in vitro regeneration of Solanum lycopersicum and assessment genetic uniformity using flow cytometry and SPAR methods. Saudi J Biol Sci 24:1430–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anisuzzaman M, Sharmin SA, Mondal SC, Sultana R, Khalekuzzaman M, Alam I, Alam MF (2008) In vitro microrhizome induction in Curcuma zedoaria (Christm.) Roscoe-a conservation prioritized medicinal plant. J Biol Sci 8:1216–1220

    Article  Google Scholar 

  • Ayati Z, Ramezani M, Amiri MS, Moghadam AT, Rahimi H, Abdollahzade A, Emami SA, Sahebkar A (2019) Ethnobotany, phytochemistry and traditional uses of Curcuma spp. and pharmacological profile of two important species (C. longa and C. zedoaria): a review. Curr Pharm Des 25:871–935

    Article  CAS  PubMed  Google Scholar 

  • Beena MR, Martin KP, Kirti PB, Hariharan M (2003) Rapid in vitro propagation of medicinally important Ceropegia candelabrum. Plant Cell Tissue Organ Cult 72:285–289

    Article  CAS  Google Scholar 

  • Behera S, Kamila PK, Rout KK, Barik DP, Panda PC, Naik SK (2018) An efficient plant regeneration protocol of an industrially important plant, Hedychium coronarium J. Koenig and establishment of genetic and biochemical fidelity of the regenerants. Ind Crops Prod 126:58–68

    Article  CAS  Google Scholar 

  • Bharalee R, Das A, Kalita MC (2005) In vitro clonal propagation of Curcuma caesia Roxb and Curcuma zedoaria Rosc from rhizome bud explants. J Plant Biochem Biot 14:61–63

    Article  Google Scholar 

  • Carolina Alves R, Perosa Fernandes R, Fonseca-Santos B, Damiani Victorelli F, Chorilli M (2019) A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem 49:138–149

    Article  CAS  PubMed  Google Scholar 

  • Çördük N, Yücel G, Akıncı N, Tuna M, Esen O (2018) In vitro propagation of Silene bolanthoides Quézel, Contandr. and Pamukç. and assessment of genetic stability by flow cytometry. Arch Biol Sci 70:141–148

    Article  Google Scholar 

  • Dakebo A, Dagne E, Sterner O (2002) Furanosesquiterpenes from Commiphora sphaerocarpa and related adulterant of true Myrrh. Fitoterapia 73:48–55

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Escobedo-GraciaMedrano RM, Maldonado-Borges JI, Burgos-Tan MJ, Valadez-González N, Ku-Cauich JR (2014) Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) ssp. malaccensis cell suspension cultures. Plant Cell Tissue Organ Cult 116:175–185

    Article  CAS  Google Scholar 

  • Faisal M, Alatar AA, Hegazy AK, Alharbi SA, El-Sheikh M, Okla MK (2014) Thidiazuron induced in vitro multiplication of Mentha arvensis and evaluation of genetic stability by flow cytometry and molecular markers. Ind Crop Prod 62:100–106

    Article  CAS  Google Scholar 

  • Ghimire BK, Seong ES, Nguyen TX, Yu CY, Kim SH, Chung IM (2016) In vitro regeneration of Melastoma malabatricum Linn. through organogenesis and assessment of clonal and biochemical fidelity using RAPD and HPLC. Plant Cell Tissue Organ Cult 124:517–529

    Article  CAS  Google Scholar 

  • Guenther E (1972) The production of essential oils. In: Robert E (ed) The essential oils, vol I. Krieger, New York, pp 361–391

    Google Scholar 

  • Ilczuk A, Jacygrad E (2016) In vitro propagation and assessment of genetic stability of acclimated plantlets of Cornus alba L. using RAPD and ISSR markers. Vitro Cell Dev Biol Plant 52:379–390

    Article  CAS  PubMed  Google Scholar 

  • Islam MA (2004) Genetic diversity of the genus Curcuma in Bangladesh and further biotechnological approaches for in vitro regeneration and long-term conservation of C. longa germplasm. Ph.D. thesis. Univ. of Hannover, Germany

  • Jena S, Ray A, Sahoo A, Sahoo S, Kar B, Panda PC, Nayak S (2018) High-frequency clonal propagation of Curcuma angustifolia ensuring genetic fidelity of micropropagated plants. Plant Cell Tissue Organ Cult 135:473–486

    Article  CAS  Google Scholar 

  • Juergens UR, Dethlefsen U, Steinkamp G, Gillissen A, Repges R, Vetter H (2003) Anti-inflammatory activity of 1,8-cineole (eucalyptol) in bronchial asthma: a double-blind placebo-controlled trial. Resp Med 97:250–256

    Article  CAS  Google Scholar 

  • Khatri P, Rana JS, Sindhu A, Jamdagni P (2019) Effect of additives on enhanced in vitro shoot multiplication and their functional group identification of Chlorophytum borivilianum Sant. Et Fernand. SN Appl Sci 1:1105

    Article  CAS  Google Scholar 

  • Konar S, Karmakar J, Ray A, Adhikari S, Bandyopadhyay TK (2018) Regeneration of plantlets through somatic embryogenesis from root derived calli of Hibiscus sabdariffa L.(Roselle) and assessment of genetic stability by flow cytometry and ISSR analysis. PloS one 13:e0202324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar MS (2017) Rapid in vitro multiplication of Centella asiatica (L.) Urban through multiple shoots from leaf explants. Eur J Biotechnol Biosci 5:41–47

    Google Scholar 

  • Lakshmi S, Padmaja G, Remani P (2011) Antitumour effects of isocurcumenol isolated from Curcuma zedoaria rhizomes on human and murine cancer cells. Int J Med Chem 2011:253962

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lata H, Chandra S, Techen N, Wang YH, Khan IA (2013) Molecular analysis of genetic fidelity in micropropagated plants of Stevia rebaudiana Bert. using ISSR marker. Am J Plant Sci 4:964

    Article  CAS  Google Scholar 

  • Lee TK, Trinh TA, Lee SR, Kim S, So HM, Moon E, Hwang GS, Kang KS, Kim JH, Yamabe N, Kim KH (2019) Bioactivity-based analysis and chemical characterization of anti-inflammatory compounds from Curcuma zedoaria rhizomes using LPS-stimulated RAW264. 7 cells. Bioorg Chem 82:26–32

    Article  CAS  PubMed  Google Scholar 

  • Liu LS, Li R, Zhao Y, Wen CL, Ren S, Guo YD (2011) High efficiency regeneration and genetic stability analysis of somatic clones of Gynura bicolor DC. Afr J Biotechnol 10:10380–10386

    Article  CAS  Google Scholar 

  • Lobo R, Prabhu KS, Shirwaikar A, Shirwaikar A (2009) Curcuma zedoaria Rosc. (white turmeric): a review of its chemical, pharmacological and ethnomedicinal properties. J Pharm Pharmacol 6:13–21

    Article  Google Scholar 

  • Loc NH, Duc DT, Kwon TH, Yang MS (2005) Micropropagation of zedoary (Curcuma zedoaria Roscoe)—a valuable medicinal plant. Plant Cell Tissue Organ Cult 81:119–122

    Article  CAS  Google Scholar 

  • Loureiro J, Pinto G, Lopes T, Doležel J, Santos C (2005) Assessment of ploidy stability of the somatic embryogenesis process in Quercus suber L. using flow cytometry. Planta 221:815–822

    Article  CAS  PubMed  Google Scholar 

  • Lourembam RM, Yadav AS, Kundu GC, Mazumder PB (2019) Curcuma zedoaria (christm.) roscoe inhibits proliferation of MDA-MB231 cells via caspase-cascade apoptosis. Orient Pharm Exp Med 19:235–241

    Article  Google Scholar 

  • Makabe H, Maru N, Kuwabara A, Kamo T, Hirota M (2006) Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Nat Prod Res 20:680–685

    Article  CAS  PubMed  Google Scholar 

  • Mohanty S, Parida R, Singh S, Joshi RK, Subudhi E, Nayak S (2011) Biochemical and molecular profiling of micropropagated and conventionally grown Kaempferia galanga. Plant Cell Tissue Organ Cult 106:39–46

    Article  CAS  Google Scholar 

  • Mohanty P, Behera S, Swain SS, Barik DP, Naik SK (2013) Micropropagation of Hedychium coronarium J. Koenig through rhizome bud. Physiol Mol Biol Plants 19:605–610

    Article  PubMed  PubMed Central  Google Scholar 

  • Moharana A, Das A, Subudhi E, Naik SK, Barik DP (2017) High frequency shoot proliferation from cotyledonary node of Lawsonia inermis L. and validation of their molecular finger printing. J Crop Sci Biotechnol 20:405–416

    Article  Google Scholar 

  • Naing AH, Kim SH, Chung MY, Park SK, Kim CK (2019) In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant Methods 15:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozdemir FA, Gur N (2018) In vitro propagation of Cataloglu Apricot (Prunus armeniaca L.) cultivar using apical node as explant. Prog Nutr 20:176–181

    Google Scholar 

  • Panda MK, Mohanty S, Subudhi E, Acharya L, Nayak S (2007) Assessment of genetic stability of micropropagated plants of Curcuma longa L. by cytophotometry and RAPD analyses. Int J Integr Biol 1:189–195

    CAS  Google Scholar 

  • Prakash S, Elangomathavan R, Seshadri S, Kathiravan K, Ignacimuthu S (2004) Efficient regeneration of Curcuma amada Roxb. plantlets from rhizome and leaf sheath explants. Plant Cell Tissue Organ Cult 78:159–165

    Article  CAS  Google Scholar 

  • Purkayastha J, Nath SC, Klinkby N (2006) Essential oil of the rhizome of Curcuma zedoaria (Christm.) Rose. native to Northeast India. J Essent Oil Res 18:154–155

    Article  CAS  Google Scholar 

  • Rahimmalek M, Mirzakhani M, Pirbalouti AG (2013) Essential oil variation among 21 wild myrtle (Myrtus communis L.) populations from different geographical regions in Iran. Ind Crops Prod 51:328–333

    Article  CAS  Google Scholar 

  • Rahman A, Afroz M, Islam R, Islam KD, Hossain MA, Na M (2014) In vitro antioxidant potential of the essential oil and leaf extracts of Curcuma zedoaria Rosc. J Appl Pharm Sci 4:107–111

    Google Scholar 

  • Rahmani AH, Alsahli MA, Aly SM, Khan MA, Aldebasi YH (2018) Role of curcumin in disease prevention and treatment. Adv Biomed Res 7:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • RaÅ¡ković A, Milanović I, Pavlović N, Ćebović T, Vukmirović S, Mikov M (2014) Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential. BMC Complement Altern Med 14:225

    Article  PubMed  PubMed Central  Google Scholar 

  • Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crops Prod 62:250–264

    Article  CAS  Google Scholar 

  • Ray A, Jena S, Dash B, Kar B, Halder T, Chatterjee T, Ghosh B, Panda PC, Nayak S, Mahapatra N (2018) Chemical diversity, antioxidant and antimicrobial activities of the essential oils from Indian populations of Hedychium coronarium Koen. Ind Crop Prod 28:353–362

    Article  CAS  Google Scholar 

  • Rewers M, Kisiala A, Drouin J, Sliwinska E, Cholewa E (2012) In vitro-regenerated wetland sedge Eriophorum vaginatum L. is genetically stable. Acta Physiol Plant 34:2197–2206

    Article  CAS  Google Scholar 

  • Rout GR, Senapati SK, Aparajeta S (2008) Micropropagation of Acacia chundra (Roxb.) DC. Hort Sci 35:22–26

    CAS  Google Scholar 

  • Saha S, Adhikari S, Dey T, Ghosh P (2016) RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta gene 7:7–15

    Article  PubMed  Google Scholar 

  • Salvi ND, George L, Eapen S (2001) Plant regeneration from leaf base callus of turmeric and random amplified polymorphic DNA analysis of regenerated plants. Plant Cell Tissue Organ Cult 66:113–119

    Article  CAS  Google Scholar 

  • Sangwan NS, Farooqi AHA, Shabih F, Sangwan RS (2001) Regulation of essential oil production in plants. Plant Growth Reg 34:3–21

    Article  CAS  Google Scholar 

  • Shahinozzaman M, Faruq MO, Kalam Azad MA, Amin MN (2013) Studies on in vitro propagation of an important medicinal plant-Curcuma zedoaria roscoe using rhizome explants. Persian Gulf crop Prot 2:1–6

    Google Scholar 

  • Shakeri A, Panahi Y, Johnston TP, Sahebkar A (2019) Biological properties of metal complexes of curcumin. BioFactors 45:304–317

    Article  CAS  PubMed  Google Scholar 

  • Shilpha J, Silambarasan T, Largia MJV, Ramesh M (2014) Improved in vitro propagation, solasodine accumulation and assessment of clonal fidelity in regenerants of Solanum trilobatum L. by flow cytometry and SPAR methods. Plant Cell Tissue Organ Cult 117:125–129

    Article  CAS  Google Scholar 

  • Siwach P, Gill AR (2011) Enhanced shoot multiplication in Ficus religiosa L. in the presence of adenine sulphate, glutamine and phloroglucinol. Physiol Mol Biol Plant 17:271–280

    Article  CAS  Google Scholar 

  • Stanly C, Keng CL (2007) Micropropagation of Curcuma zedoaria roscoe and Zingiber zerumbet smith. Biotechnology 6:555–560

    Article  CAS  Google Scholar 

  • Syamsir DR, Sivasothy Y, Hazni H, Abdul Malek SN, Nagoor NH, Ibrahim H, Awang K (2017) Chemical constituents and evaluation of cytotoxic activities of Curcuma zedoaria (Christm.) roscoe oils from malaysia and indonesia. J Essent Oil Bear Plant 20:972–982

    Article  CAS  Google Scholar 

  • Tariq S, Imran M, Mushtaq Z, Asghar N (2016) Phytopreventive antihypercholesterolmic and antilipidemic perspectives of zedoary (Curcuma Zedoaria Roscoe.) herbal tea. Lipids Health Dis 15:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tripathi M, Kumari N (2010) Micropropagation of a tropical fruit tree Spondias mangifera Willd. through direct organogenesis. Acta Physiol Plant 32:1011–1015

    Article  Google Scholar 

  • Tripathi D, Rai KK, Rai SK, Rai SP (2018) An improved thin cell layer culture system for efficient clonal propagation and in vitro withanolide production in a medicinal plant Withania coagulans Dunal. Ind Crop Prod 119:172–182

    Article  CAS  Google Scholar 

  • Valizadeh J, Valizadeh M (2011) Development of efficient micropropagation protocol for Withania coagulans (Stocks) Dunal. Afr J Biotechnol 10:7611–7616

    CAS  Google Scholar 

  • Viehmannova I, Cepkova PH, Vitamvas J, Streblova P, Kisilova J (2016) Micropropagation of a giant ornamental bromeliad Puya berteroniana through adventitious shoots and assessment of their genetic stability through ISSR primers and flow cytometry. Plant Cell Tissue Organ Cult 125:293–302

    Article  CAS  Google Scholar 

  • Werner ET, Soares TCB, Gontijo ABPL, Neto JS, Amaral JAT (2015) Genetic stability of micropropagated plants of Crambe abyssinica Hochst using ISSR markers. Genet Mol Res 14:16450–16460

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Yu Y, Luo X, Zhang JN, Zhao B, Guo YD (2010) High efficiency organogenesis and analysis of genetic stability of the regenerants in Solanum melongena. Biol Plant 54:231–236

    Article  CAS  Google Scholar 

  • Zuraida AR (2013) Improved in vitro propagation of Curcuma caesia, a valuable medicinal plant. J Trop Agric and Food Sci 41:273–281

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. S.C. Si, Dean, Centre for Biotechnology and Dr. M.R. Nayak, President, Siksha ‘O’ Anusandhan (Deemed to be University) for providing facilities and encouragement throughout.

Author information

Authors and Affiliations

Authors

Contributions

SJ and AR conceived the idea. SJ, AR, AS and SS performed the research. SJ, BD and BK conducted the experiments. SJ and AR analyzed the results and conducted the statistical analysis. SJ wrote the manuscript. AR and SN revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Sanghamitra Nayak.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1020 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S., Ray, A., Sahoo, A. et al. Rapid plant regeneration in industrially important Curcuma zedoaria revealing genetic and biochemical fidelity of the regenerants. 3 Biotech 10, 17 (2020). https://doi.org/10.1007/s13205-019-2009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-2009-9

Keywords

Navigation