Skip to main content

Advertisement

Log in

Hairy root induction and Farnesiferol B production of endemic medicinal plant Ferula pseudalliacea

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The effects of medium, gibberellic acid (GA3) and stratification treatments on the seed germination of Ferula pseudalliacea were evaluated. Filter paper medium, 500 micro molar GA3 and 8 week chilling treatment were resulted in significantly more seed germination than others. F. pseudalliacea was also transformed by Agrobacterium rhizogenes. Explants from young leaves, stems, cotyledon, and embryo were inoculated with A. rhizogenes strains ATCC 15834, 1724, A4, LB9402 and Ar318. Hairy roots were induced only from 10 to 12-days embryo explants using strains ATCC 15824 and 1724. Although, the transformation efficiency of ATCC 15834 (4%) strain was higher than 1724 (2%). Maximum hairy root transformation frequency (25%) was obtained in infection time of 10 min compared to that of 20 (20%) and 30 (5%) min. In addition, the transformation rate was significantly higher at the inoculation time of 72 h (29%) compared to that of 48 h (22%) and 24 h (6%). Transgenic hairy root lines were confirmed by PCR amplification of rolB gene. Hairy root lines were produced higher biomass in half B5 medium compared to that of half MS medium. Hairy roots lines from the strain ATCC 15834 produced more hairy root numbers and fresh and dried biomass compared to that of the strain 1724. Analyses of transgenic hairy root and natural roots extracts using HPLC showed that all the hairy root lines produced farnesiferol B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd El-Razek MH (2003) Terpenoid coumarins of the genus Ferula. Heterocycles 60:689–716

    CAS  Google Scholar 

  • Alpizar E, Dechamp E, Espeout S, Royer M, Lecouls A-C, Nicole M, Bertrand B, Lashermes P, Etienne H (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959–967

    CAS  PubMed  Google Scholar 

  • Asghari J, Atabaki V, Baher E, Mazaheritehrani M (2016) Identification of sesquiterpene coumarins of oleo-gum resin of Ferula assa-foetida L. from the Yasuj region. Nat Prod Res 30:350–353

    CAS  PubMed  Google Scholar 

  • Bahramnejad B, Naji M, Bose R, Jha S (2019) A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnol Adv S0734–9750(19):30095. https://doi.org/10.1016/j.biotechadv.2019.06.004

    Article  CAS  Google Scholar 

  • Bamehr H, Saidijam M, Dastan D, Amini R, Pourjafar M, Najafi R (2019) Ferula pseudalliacea induces apoptosis in human colorectal cancer HCT-116 cells via mitochondria-dependent pathway. Arch Physiol Biochem 125:284–291

    CAS  PubMed  Google Scholar 

  • Bansal M, Kumar A, Reddy MS (2014) Influence of Agrobacterium rhizogenes strains on hairy root induction and ‘bacoside A’production from Bacopa monnieri (L.) Wettst. Acta Physiol Plant 36:2793–2801

    CAS  Google Scholar 

  • Barthomeuf C, Lim S, Iranshahi M, Chollet P (2008) Umbelliprenin from Ferula szowitsiana inhibits the growth of human M4Beu metastatic pigmented malignant melanoma cells through cell-cycle arrest in G1 and induction of caspase-dependent apoptosis. Phytomedicine 15:103–111

    CAS  PubMed  Google Scholar 

  • Brijwal L, Tamta S (2015) Agrobacterium rhizogenes mediated hairy root induction in endangered Berberis aristata DC. SpringerPlus 4:443

    PubMed  PubMed Central  Google Scholar 

  • Dastan D, Salehi P, Gohari AR, Zimmermann S, Kaiser M, Hamburger M, Khavasi HR, Ebrahimi SN (2012) Disesquiterpene and sesquiterpene coumarins from Ferula pseudalliacea, and determination of their absolute configurations. Phytochemistry 78:170–178

    CAS  PubMed  Google Scholar 

  • Dastan D, Salehi P, Ghanati F, Gohari AR, Maroofi H, Alnajar N (2014) Phytotoxicity and cytotoxicity of disesquiterpene and sesquiterpene coumarins from Ferula pseudalliacea. Ind Crop Prod 55:43–48

    CAS  Google Scholar 

  • Dastan D, Salehi P, Aliahmadi A, Gohari AR, Maroofi H, Ardalan A (2016) New coumarin derivatives from Ferula pseudalliacea with antibacterial activity. Nat Prod Res 30:2747–2753

    CAS  PubMed  Google Scholar 

  • DeBoer KD, Lye JC, Aitken CD, Su AK-K, Hamill JD (2009) The A622 gene in Nicotiana glauca (tree tobacco): evidence for a functional role in pyridine alkaloid synthesis. Plant Mol Biol 69:299–312

    CAS  PubMed  Google Scholar 

  • Eigner D, Scholz D (1999) Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. J Ethnopharmacol 67:1–6

    CAS  PubMed  Google Scholar 

  • El-Razek MHA, Ohta S, Ahmed AA, Hirata T (2001) Sesquiterpene coumarins from the roots of Ferula assa-foetida. Phytochemistry 58:1289–1295

    Google Scholar 

  • Golmohammadi F (2013) Medical plant of Ferula assa-foetida and its cultivating, main characteristics and economical importance in South Khorasan province-east of Iran. TJEAS 3:2334–2346

    Google Scholar 

  • Grzegorczyk I, Królicka A, Wysokińska H (2006) Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Zeitschrift für Naturforschung C 61:351–356

    CAS  Google Scholar 

  • Gudarzi H, Salimi M, Irian S, Amanzadeh A, Mostafapour Kandelous H, Azadmanesh K, Salimi M (2015) Ethanolic extract of Ferula gummosa is cytotoxic against cancer cells by inducing apoptosis and cell cycle arrest. Nat Prod Res 29:546–550

    CAS  PubMed  Google Scholar 

  • Hassani S, Saboora A, Radjabian T, Fallah Husseini H (2009) Effects of temperature, GA3 and cytokinins on breaking seed dormancy of Ferula assa-foetida L. IJSTS 33:75–85

    CAS  Google Scholar 

  • Hosseini SM, Bahramnejad B, Douleti Baneh H, Emamifar A, Goodwin PH (2017) Hairy root culture optimization and resveratrol production from Vitis vinifera subsp. sylvesteris. World J Microbiol Biotechnol 33:67–76

    PubMed  Google Scholar 

  • Iranshahi M, Arfa P, Ramezani M, Jaafari MR, Sadeghian H, Bassarello C, Piacente S, Pizza C (2007) Sesquiterpene coumarins from Ferula szowitsiana and in vitro antileishmanial activity of 7-prenyloxycoumarins against promastigotes. Phytochemistry 68:554–561

    CAS  PubMed  Google Scholar 

  • Kajikawa M, Hirai N, Hashimoto T (2009) A PIP-family protein is required for biosynthesis of tobacco alkaloids. Plant Mol Biol 69:287

    CAS  PubMed  Google Scholar 

  • Kanani MR, Rahiminejad MR, Sonboli A, Mozaffarian V, Kazempour Osaloo S, Nejad Ebrahimi S (2011) Chemotaxonomic significance of the essential oils of 18 Ferula species (Apiaceae) from Iran. Chem Biodivers 8:503–517

    CAS  PubMed  Google Scholar 

  • Kapoor L (2000) Handbook of ayurvedic medicinal plants: Herbal reference library. CRC Press, Boca Raton

    Google Scholar 

  • Keshtkar A, Keshtkar H, Razavi S, Dalfardi S (2008) Methods to break seed dormancy of Astragalus cyclophyllon. Afr J Biotechnol 7:3874–3877

    CAS  Google Scholar 

  • Lee J-H, Choi S, Lee Y, Lee H-J, Kim K-H, Ahn K-S, Bae H, Lee H-J, Lee E-O, Ahn K-S (2010) Herbal compound farnesiferol C exerts antiangiogenic and antitumor activity and targets multiple aspects of VEGFR1 (Flt1) or VEGFR2 (Flk1) signaling cascades. Mol Can Ther 9:389–399

    CAS  Google Scholar 

  • Lima JE, Benedito VA, Figueira A, Peres LEP (2009) Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. Plant Cell Rep 28:1169–1177

    CAS  PubMed  Google Scholar 

  • Liu S, Su L, Liu S, Zeng X, Zheng D, Hong L, Li L (2016) Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: an efficient tool for functional study of genes. Biotechnol Biotechnol Equip 30:869–878

    CAS  Google Scholar 

  • Moghadam FH, Dehghan M, Zarepur E, Dehlavi R, Ghaseminia F, Ehsani S, Mohammadzadeh G, Barzegar K (2014) Oleo gum resin of Ferula assa-foetida L. ameliorates peripheral neuropathy in mice. J Ethnopharmacol 154:183–189

    Google Scholar 

  • Murray RDH, Méndez J, Brown SA (1982) The natural coumarins. Wiley, Chichester

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, Hahn EJ, Paek KY (2008) Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J Integr Plant Biol 50:975–981

    CAS  PubMed  Google Scholar 

  • Nadjafi F, Bannayan M, Tabrizi L, Rastgoo M (2006) Seed germination and dormancy breaking techniques for Ferula gummosa and Teucrium polium. J Arid Environ 64:542–547

    Google Scholar 

  • Nazari ZE, Iranshahi M (2011) Biologically active sesquiterpene coumarins from Ferula species. Phytother Res 25:315–323

    CAS  PubMed  Google Scholar 

  • Nin S, Bennici A, Roselli G, Mariotti D, Schiff S, Magherini R (1997) Agrobacterium-mediated transformation of Artemisia absinthium L. (wormwood) and production of secondary metabolites. Plant Cell Rep 16:725–730

    CAS  PubMed  Google Scholar 

  • Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439–446

    CAS  PubMed  Google Scholar 

  • Panda BM, Mehta UJ, Hazra S (2017) Optimizing culture conditions for establishment of hairy root culture of Semecarpus anacardium L. 3 Biotech 7:21

    PubMed  PubMed Central  Google Scholar 

  • Pimenov MG, Leonov MV (1993) The genera of the Umbelliferae: a nomenclator. Royal Botanic Gardens, Kew

    Google Scholar 

  • Pimenov M, Leonov M, Van Wyk B-E, Tilney P (2004) Asia, the continent with the highest Umbelliferae biodiversity. S Afr J Bot 70:417–419

    Google Scholar 

  • Porter JR, Flores H (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421

    Google Scholar 

  • Razavi SM, Janani M (2015) A new ester coumarin from Ferula Persica wild, indigenous to Iran. Nat Prod Res 29:717–721

    CAS  PubMed  Google Scholar 

  • Sattar Z, Iranshahi M (2017) Phytochemistry and pharmacology of Ferula persica Boiss: a review. Iran J Basic Med Sci 20:1–8

    PubMed  PubMed Central  Google Scholar 

  • Shahverdi A, Saadat F, Khorramizadeh M, Iranshahi M, Khoshayand M (2006) Two matrix metalloproteinases inhibitors from Ferula persica var. persica. Phytomedicine 13:712–717

    CAS  PubMed  Google Scholar 

  • Sharafi A, Sohi HH, Azadi P, Sharafi AA (2014) Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiol Mol Biol Plants 20:257–262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Khajuria A, Verma S (2013) Genomic DNA extraction from Ferula jaeschkeana Vatke (Apiaceae) optimized for random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) analysis. Proc Natl Acad Sci India Sect B Biol Sci 83:341–345

    CAS  Google Scholar 

  • Sujatha G, Zdravkovic-Korac S, Flamini Calic D, Kumari BR (2013) High-efficiency Agrobacterium rhizogenes-mediated genetic transformation in Artemisia vulgaris: hairy root production and essential oil analysis. Ind Crops Prod 44:643–652

    CAS  Google Scholar 

  • Tan R-F, Tao J, Li L (2007) Genetic transformation of Ipomoea purpurea mediated by Agrobacterium rhizogenes. Floric Ornam Biotech 1:131–135

    Google Scholar 

  • Tavassoli P, Afshar Safipour (2018) Influence of different Agrobacterium rhizogenes strains on hairy root induction and analysis of phenolic and flavonoid compounds in marshmallow (Althaea officinalis L.). 3 Biotech 8:351

    PubMed  PubMed Central  Google Scholar 

  • Trypsteen M, Van Lijsebettens M, Van Severen R, Van Montagu M (1991) Agrobacterium rhizogenes-mediated transformation of Echinacea purpurea. Plant Cell Rep 10:85–89

    CAS  PubMed  Google Scholar 

  • Xu H, Zhou X, Lu J, Wang J, Wang X (2006) Hairy roots induced by Agrobacterium rhizogenes and production of regenerative plants in hairy root cultures in maize. Sci Chin Ser C Life Sci 49:305–310

    CAS  Google Scholar 

  • Yao SC, Bai LH, Lan ZZ, Tang MQ, Zhai YJ, Huang H, Wei RC (2016) Hairy root induction and polysaccharide production of medicinal plant Callerya speciosa Champ. Plant Cell Tissue Organ Cult 126:177–186

    CAS  Google Scholar 

  • Yonemitsu H, Shimomura K, Satake M, Mochida S, Tanaka M, Endo T, Kaji A (1990) Lobeline production by hairy root culture of Lobelia inflata L. Plant Cell Rep 9:307–310

    CAS  PubMed  Google Scholar 

  • Zare A, Solouki M, Omidi M, Irvani N, Oladzad A, Mahdi Nezad N (2011) Effect of various treatments on seed germination and dormancy breaking in Ferula assa-foetida L. (Asafetida), a threatened medicinal herb. Trakia J Sci 9:57–61

    Google Scholar 

  • Zarei H, Rezaee R, Behravan E, Soltani F, Mosaffa F, Iranshahi M, Behravan J (2013) Diversin, from Ferula diversivittata protects human lymphocytes against oxidative stress induced by H2O2. Natural Prod Res 27:1016–1019

    CAS  Google Scholar 

  • Zargari A (1997) Pharmaceutical plants. Persian Tehran University Press, Tehran

    Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Kurdistan. The authors would like to thank Dr. Mirzaghaderi, University of Kurdistan, for his help in counting of mitotic chromosomes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahman Bahramnejad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaei, A., Bahramnejad, B., Mozafari, AA. et al. Hairy root induction and Farnesiferol B production of endemic medicinal plant Ferula pseudalliacea. 3 Biotech 9, 407 (2019). https://doi.org/10.1007/s13205-019-1935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1935-x

Keywords

Navigation