Skip to main content
Log in

Secretory expression of the rat aryl sulfotransferases IV with improved catalytic efficiency by molecular engineering

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The rat aryl sulfotransferases IV (AST IV) has been used to catalyze 3′-phosphoadenosine-5′-phosphate (PAP) into the sulfuryl group donor 3′-phosphoadenosine-5′-phosphosulfate (PAPS) in biotechnological production of glycosaminoglycans. The performance of native AST IV is not satisfying due to the lower catalytic activity with substrate PAP. In the present study, we achieved secretory expression of the AST IV and improved its catalytic efficiency by molecular engineering. Fusion with signal peptides Cex, YebF and PelB allow for secretory expression of AST IV and the secreted AST IV yield reached 4.21 ± 0.23 U/mL, 8.67 ± 0.34 U/mL and 21.35 ± 0.87 U/mL, respectively. Modification of PelB further increased the secretory expression by more than fourfold, to 89.67 ± 1.34 U/mL. On this basis, molecular evolution of the predicted PAP-binding pocket gate loop was performed and a positive mutant L89S/E90L with higher activity was identified. Considering the importance of the sites Leu89 and Glu90, we performed site-saturation mutagenesis and found the mutant L89M/E90Q with much higher PAP affinity (Km= 0.46 ± 0.02 mM) and catalytic efficiency (kcat/Km = 1816.32 ± 12.72/s/M). The secretory expression of the AST IV variant L89M/E90Q with higher catalytic efficiency should facilitate the studies on biosynthesis of sulfated polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An C, Zhao L, Wei Z, Zhou X (2017) Chemoenzymatic synthesis of 3′-phosphoadenosine-5′-phosphosulfate coupling with an ATP regeneration system. Appl Microbiol Biotechnol 101:7535–7544

    Article  CAS  Google Scholar 

  • Berger I, Guttman C, Amar D, Zarivach R, Aharoni A (2011) The molecular basis for the broad substrate specificity of human sulfotransferase 1A1. PLoS One 6:e26794

    Article  CAS  Google Scholar 

  • Brix LA, Barnett AC, Duggleby RG, Leggett B, McManus ME (1999) Analysis of the substrate specificity of human sulfotransferases SULT1A1 and SULT1A3: site-directed mutagenesis and kinetic studies. Biochemistry 38:10474–10479

    Article  CAS  Google Scholar 

  • Burkart MD, Izumi M, Wong CH (1999) Enzymatic regeneration of 3′-phosphoadenosine-5′-phosphosulfate using aryl sulfotransferase for the preparative enzymatic synthesis of sulfated carbohydrates. Angew Chem Int Edit 38:2747–2750

    Article  CAS  Google Scholar 

  • Burkart MD, Izumi M, Chapman E, Lin CH, Wong CH (2000) Regeneration of PAPS for the enzymatic synthesis of sulfated oligosaccharides. J Org Chem 65:5565–5574

    Article  CAS  Google Scholar 

  • Campbell NR, Van Loon JA, Sundaram RS, Ames MM, Hansch C, Weinshilboum R (1987) Human and rat liver phenol sulfotransferase: structure-activity relationships for phenolic substrates. Mol Pharmacol 32:813–819

    CAS  PubMed  Google Scholar 

  • Dajani R, Hood AM, Coughtrie MWH (1998) A single amino acid, Glu146, governs the substrate specificity of a human dopamine sulfotransferase, SULT1A3. Mol Pharmacol 54:942–948

    Article  CAS  Google Scholar 

  • Duffel MW, Jakoby WB (1981) On the mechanism of aryl sulfotransferase. J Biol Chem 256:11123–11127

    CAS  PubMed  Google Scholar 

  • Duffel MW, Chen GP, Sharma V (1998) Studies on an affinity label for the sulfuryl acceptor binding site in an aryl sulfotransferase. Chem-Biol Interact 109:81–92

    Article  CAS  Google Scholar 

  • Duffel MW, Marshall AD, McPhie P, Sharma V, Jakoby WB (2001) Enzymatic aspects of the phenol (aryl) sulfotransferases. Drug Metab Rev 33:369–395

    Article  CAS  Google Scholar 

  • Durrant JD, de Oliveira CAF, McCammon JA (2011) POVME: an algorithm for measuring binding-pocket volumes. J Mol Graph Model 29:773–776

    Article  CAS  Google Scholar 

  • Farrugia BL, Lord MS, Melrose J, Whitelock JM (2018) The role of heparan sulfate in inflammation, and the development of biomimetics as anti-inflammatory strategies. J Histochem Cytochem 66:321–336

    Article  CAS  Google Scholar 

  • Gamage NU, Duggleby RG, Barnett AC, Tresillian M, Latham CF, Liyou NE, McManus ME, Martin JL (2003) Structure of a human carcinogen-converting enzyme, SULT1A1—structural and kinetic implications of substrate inhibition. J Biol Chem 278:7655–7662

    Article  CAS  Google Scholar 

  • Gamage NU, Tsvetanov S, Duggleby RG, McManus ME, Martin JL (2005) The structure of human SULT1A1 crystallized with estradiol. An insight into active site plasticity and substrate inhibition with multi-ring substrates. J Biol Chem 280:41482–414286

    Article  CAS  Google Scholar 

  • Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  • Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S, Fraser B, Al-Hakim A, Gunay NS, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R, Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R (2008) Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat Biotechnol 26:669–675

    Article  CAS  Google Scholar 

  • Kakuta Y, Pedersen LG, Carter CW, Negishi M, Pedersen LC (1997) Crystal structure of estrogen sulphotransferase. Nat Struct Biol 4:904–908

    Article  CAS  Google Scholar 

  • Kang Z, Zhou Z, Wang Y, Huang H, Du G, Chen J (2018) Bio-based strategies for producing glycosaminoglycans and their oligosaccharides. Trends Biotechnol 36:806–818

    Article  CAS  Google Scholar 

  • Kaysser L, Eitel K, Tanino T, Siebenberg S, Matsuda A, Ichikawa S, Gust B (2010) A new asst-type sulfotransferase involved in liponucleoside antibiotic biosynthesis in streptomycetes. J Biol Chem 285:12684–12694

    Article  CAS  Google Scholar 

  • Kuberan B, Lech MZ, Beeler DL, Wu ZL, Rosenberg RD (2003) Enzymatic synthesis of antithrombin III-binding heparan sulfate pentasaccharide. Nat Biotechnol 21:1343–1346

    Article  CAS  Google Scholar 

  • Liu MC, Suiko M, Sakakibara Y (2000) Mutational analysis of the substrate binding/catalytic domains of human M form and P form phenol sulfotransferases. J Biol Chem 275:13460–13464

    Article  CAS  Google Scholar 

  • Lu J, Li H, Zhang J, Li M, Liu MY, An X, Liu MC, Chang W (2010) Crystal structures of SULT1A2 and SULT1A1 *3: insights into the substrate inhibition and the role of Tyr149 in SULT1A2. Biochem Bioph Res Commun 396:429–434

    Article  CAS  Google Scholar 

  • Malojcic G, Owen RL, Grimshaw JPA, Brozzo MS, Dreher-Teo H, Glockshuber R (2008) A structural and biochemical basis for PAPS-independent sulfuryl transfer by aryl sulfotransferase from uropathogenic Escherichia coli. P Natl Acad Sci USA 105:19217–19222

    Article  CAS  Google Scholar 

  • Rao SI, Duffel MW (1991) Benzylic alcohols as stereospecific substrates and inhibitors for aryl sulfotransferase. Chirality 3:104–111

    Article  CAS  Google Scholar 

  • Rosenthal E, Leustek T (1995) A multifunctional Urechis caupo protein, PAPS synthetase, has both ATP sulfurylase and APS kinase activities. Gene 165:243–248

    Article  CAS  Google Scholar 

  • Sakakibara Y, Takami Y, Nakayama T, Suiko M, Liu M-C (1998) Localization and functional analysis of the substrate specificity/catalytic domains of human M-form and P-form phenol sulfotransferases. J Biol Chem 273:6242–6247

    Article  CAS  Google Scholar 

  • Tyapochkin E, Cook PF, Chen G (2009) P-nitrophenyl sulfate activation of human sulfotransferase 1A1 is consistent with intercepting the E-PAP complex and reformation of E-PAPS. J Biol Chem 284:29357–29364

    Article  CAS  Google Scholar 

  • van der Horst MA, Hartog AF, El Morabet R, Marais A, Kircz M, Wever R (2015) Enzymatic sulfation of phenolic hydroxy groups of various plant metabolites by an arylsulfotransferase. Eur J Org Chem 2015:534–541

    Article  Google Scholar 

  • Weinstock GM, McEntee K, Lehman IR (1981) Hydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Steady state kinetic analysis of ATP hydrolysis. J Biol Chem 256:8845–8849

    CAS  PubMed  Google Scholar 

  • Yang YS, Marshall AD, McPhie P, Guo WXA, Xie XF, Chen X, Jakoby WB (1996) Two phenol sulfotransferase species from one cDNA: nature of the differences. Protein Expr Purif 8:423–429

    Article  CAS  Google Scholar 

  • Zhou Z, Li Q, Huang H, Wang H, Wang Y, Du G, Chen J, Kang Z (2018) A microbial–enzymatic strategy for producing chondroitin sulfate glycosaminoglycans. Biotechnol Bioeng 115:1561–1570

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (31670092), the Fundamental Research Funds for the Central Universities (JUSRP51707A), the National First-class Discipline Program of Light Industry Technology and Engineering (LITE2018-16), and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_15R26) and the 111 Project.

Author information

Authors and Affiliations

Authors

Contributions

ZZ and ZK designed the experiments. QL, RX, and BW carried out all the experiments and analyzed data. GD wrote the manuscript.

Corresponding authors

Correspondence to Guocheng Du or Zhen Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Li, Q., Xu, R. et al. Secretory expression of the rat aryl sulfotransferases IV with improved catalytic efficiency by molecular engineering. 3 Biotech 9, 246 (2019). https://doi.org/10.1007/s13205-019-1781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1781-x

Keywords

Navigation