Skip to main content
Log in

Production and characterization of bioemulsifiers from Acinetobacter strains isolated from lipid-rich wastewater

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, two indigenous bacterial strains (Ab9-ES and Ab33-ES) isolated from lipid-rich wastewater showed potential to produce bioemulsifier in the presence of 2% (v/v) olive oil as a carbon source. These bacterial strains were identified as Acinetobacter sp. Ab9-ES and Acinetobacter sp. Ab33-ES by polymerase chain reaction and analysis of 16S rRNA gene sequences. Bioemulsifier production by these strains was found to be growth-linked. Maximum emulsifying activities (83.8% and 80.8%) were recorded from strains Ab9-ES and Ab33-ES, respectively. Bioemulsifier yields of 4.52 g/L and 4.31 g/L were obtained from strains Ab9-ES (XB9) and Ab33-ES (YB33), respectively. Fourier-transform infrared spectroscopic analysis revealed the glycoprotein nature of the bioemulsifiers. The bioemulsifiers formed stable emulsions only in the presence of edible oils. Maximum emulsifying activities of 79.6% (XB9) and 67.9% (YB33) were recorded in the presence of sunflower oil. The bioemulsifiers were found to be stable at a broad range of temperature (4–121 °C), moderate pH (5.0–10.0) and salinity (1–6%). In addition, bioemulsifier XB9 showed maximum emulsifying activities (77.3%, 74.5%, and 74.9%) at optimum temperature (50 °C), pH (7.0), and NaCl concentration (3%), respectively. On the contrary, YB33 demonstrated highest activities (73.6%, 72%, and 61.2%) at optimum conditions of 70 °C, pH 7.0, and NaCl concentration of 5%, respectively. Findings from this study suggest the potential biotechnological applications of the bioemulsifiers, especially in the remediation of oil-polluted sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adetunji AI, Olaniran AO (2018a) Treatment of lipid-rich wastewater using a mixture of free or immobilized bioemulsifier and hydrolytic enzymes from indigenous bacterial isolates. Desalin Water Treat 132:274–280

    Article  CAS  Google Scholar 

  • Adetunji AI, Olaniran AO (2018b) Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai Ab15-ES using response surface methodology. Biotechnol Biotechnol Equip 32(6):1514–1526

    Article  Google Scholar 

  • Akinbowale OL, Peng H, Grant P, Barton MD (2007) Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. Int J Antimicrob Agents 30(2):177–182

    Article  CAS  PubMed  Google Scholar 

  • Aparna A, Srinikethan G, Smitha H (2012) Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Coll Surf B 95:23–29

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS, Patil R, Nyayanit NV (2014) Cost effective technologies and renewable substrates for biosurfactants’ production. Front Microbiol 5:697

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista SB, Mounteer AH, Amorim FR, Tótola MR (2006) Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites. Bioresour Technol 97(6):868–875

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya M, Biswas D, Sana S, Datta S (2014) Utilization of waste engine oil by Ochrobactrum pseudintermedium strain C1 that secretes an exopolysaccharide as a bioemulsifier. Biocatal Agric Biotechnol 3(4):167–176

    Article  Google Scholar 

  • Camacho-Chab JC, Guézennec J, Chan-Bacab MJ, Ríos-Leal E, Sinquin C, Muñiz-Salazar R, De la Rosa-García SDC, Reyes-Estebanez M, Ortega-Morales BO (2013) Emulsifying activity and stability of a non-toxic bioemulsifier synthesized by Microbacterium sp. MC3B-10. Int J Mol Sci 14(9):18959–18972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen BE (1989) The role of extracellular polysaccharides in biofilms. J Biotechnol 10(3–4):181–202

    Article  CAS  Google Scholar 

  • Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48(4):747–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DG (1986) Biosurfactants. Microbiol Sci 3(5):145–149

    CAS  PubMed  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53(2):224–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dastgheib SMM, Amoozegar MA, Elahi E, Asad S, Banat IM (2008) Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery. Biotechnol Lett 30(2):263–270

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–356

    Article  CAS  Google Scholar 

  • Foght JM, Gutnick DL, Westlake DWS (1989) Effect of emulsan on biodegradation of crude oil by pure and mixed bacterial cultures. Appl Environ Microbiol 55(1):36–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226(1):497–509

    CAS  PubMed  Google Scholar 

  • Franzetti A, Gandolfi I, Raimondi C, Bestetti G, Banat IM, Smyth TJ, Papacchini M, Cavallo M, Fracchia L (2012) Environmental fate, toxicity, characteristics and potential applications of novel bioemulsifiers produced by Variovorax paradoxus 7bCTS. Bioresour Technol 108:245–251

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves V, Carvalheira M, Costa N, Oliveira R, Reis M (2009) Emulsifying behavior and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol byproduct. Carbohydr Polym 78(3):549–556

    Article  CAS  Google Scholar 

  • Gudiña EJ, Pereira JFB, Costa R, Evtuguin DV, Coutinho JAP, Teixeira JA, Rodrigues LR (2015) Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microb Cell Fact 14:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB40044 from waste frying oils. J Appl Microbiol 88(3):379–387

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Bharucha C, Desai AJ (2008) Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B. Bioresour Technol 99(11):4603–4608

    Article  CAS  PubMed  Google Scholar 

  • Kiran GS, Thomas TA, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA 13 in solid state culture. Bioresour Technol 101:2389–2396

    Article  CAS  Google Scholar 

  • Kitamoto D, Isoda H, Nakahara T (2002) Functions and potential applications of glycolipid biosurfactants: from energy-saving materials to gene delivery carriers. J Biosci Bioeng 94(3):187–201

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AI, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  • Luna JM, Rufino RD, Campos-Takaki GM, Sarubbo LA (2012) Properties of the biosurfactant produced by Candida sphaerica cultivated in low-cost substrates. Chem Eng Trans 27:67–72

    Google Scholar 

  • Luna-Velasco MA, Esparza-Garcia F, Canizares-Villanueva RO, Rodriguez-Vazquez R (2007) Production and properties of a bioemulsifier synthesized by phenanthrene-degrading Penicillium sp. Proc Biochem 42(3):310–314

    Article  CAS  Google Scholar 

  • Marchant R, Funston S, Uzoigwe C, Rahman PKSM, Banat IM (2014) Production of biosurfactants from nonpathogenic bacteria. In: Kosaric N, Sukan FV (eds) Biosurfactants: production and utilization- processes, technologies, and economics. CRC Press, Boca Raton, pp 73–82

    Chapter  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Dymock D, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64(2):795–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Markande AR, Acharya SR, Nerurkar AS (2013) Physicochemical characterization of a thermostable glycoprotein bioemulsifier from Solibacillus silvestris AM1. Proc Biochem 48(11):1800–1808

    Article  CAS  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of the lipopeptide biosurfactants. Biochem Biophy Acta 1488(3):211–218

    CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollution 133(2):183–198

    Article  CAS  Google Scholar 

  • Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61(9):3240–3244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pansiripat S, Pornsunthorntawee O, Rujiravanit R, Kitiyanan B, Somboonthanate P, Chavadej S (2010) Biosurfactant production by Pseudomonas aeruginosa SP4 using sequencing batch reactors: effect of oil-to-glucose ratio. Biochem Eng J 49(2):185–191

    Article  CAS  Google Scholar 

  • Patil JR, Chopade BA (2001) Studies on bioemulsifier production by Acinetobacter strains isolated from healthy human skin. J Appl Microbiol 91(2):290–298

    Article  CAS  PubMed  Google Scholar 

  • Patowary K, Patowary R, Kalita MC, Deka S (2017) Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol 8:279

    Article  PubMed  PubMed Central  Google Scholar 

  • Phetrong K, Kittikun AH, Maneerat S (2008) Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7 Songklanakarin J Sci Technol 30(3):297–305(

    Google Scholar 

  • Pornsunthorntawee O, Arttaweeporn N, Paisanjit S, Somboonthanate P, Abe M, Rujiravanit R, Chavadej S (2008) Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochem Eng J 42(2):172–179

    Article  CAS  Google Scholar 

  • Rosenberg E (1986) Microbial surfactants. Critical Rev Biotechnol 3:109–132

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular mass microbial surfactants. Appl Microbiol Biotechnol 52(2):154–162

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, Ron EZ (1988) Production of biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol 54(2):317–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rupani PF, Singh RP, Ibrahim MH, Esa N (2010) Review of current palm oil mill effluent (POME) treatment methods: vermicomposting as a sustainable practice. World Appl Sci J 11(1):70–81

    CAS  Google Scholar 

  • Saisa-ard K, Maneerat S, Saimmai A (2013) Isolation and characterization of biosurfactant-producing bacteria isolated from palm oil industry and evaluation for biosurfactants production using low-cost substrates. Bio Technol 94(3):275–284

    CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sar N, Rosenberg E (1983) Emulsifier production by Acinetobacter calcoaceticus strains. Curr Microbiol 9(6):309–313

    Article  CAS  Google Scholar 

  • Sarubbo LA, Marcal MC, Neves MLC, Silva MPC, Porto ALF, Campos-Takaki GM (2001) Bioemulsifier production in batch culture using glucose as carbon source by Candida lipolytica. Appl Biochem Biotechnol 95(1):59–67

    Article  CAS  PubMed  Google Scholar 

  • Sarubbo LA, Farias CBB, Campos-Takaki GM (2007) Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr Microbiol 54(1):68–73

    Article  CAS  PubMed  Google Scholar 

  • Slavov AK (2017) General characteristics and treatment possibilities of dairy wastewater—a review. Food Technol Biotechnol 55(1):14–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart BH (2004) Organic molecules. In Stuart BH (Ed.), Infrared spectroscopy: fundamental and applications, Wiley, New Jersey, pp 44–70

    Chapter  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evo 30(12):2725–2729

    Article  CAS  Google Scholar 

  • Uzoigwe C, Burgess JG, Ennis CJ, Rahman PKSM (2015) Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiol 6:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Li Z, Su J, Zhang R, Liu C, Zhao M (2012) Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. J Appl Microbiol 113(1):44–51

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of the National Research Foundation (NRF) of South Africa towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF. The first author is thankful to Dr. Ajit Kumar for providing technical assistance to accomplish the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ademola Olufolahan Olaniran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adetunji, A.I., Olaniran, A.O. Production and characterization of bioemulsifiers from Acinetobacter strains isolated from lipid-rich wastewater. 3 Biotech 9, 151 (2019). https://doi.org/10.1007/s13205-019-1683-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1683-y

Keywords

Navigation