Skip to main content
Log in

Intra-population genetic diversity of Buchloe dactyloides (Nutt.) Engelm (buffalograss) determined using morphological traits and sequence-related amplified polymorphism markers

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Genetic variation and diversity are prerequisites for improvement of buffalograss breeding. To assess the within-population genetic diversity of buffalograss, seven morphological traits were evaluated to confirm the variations at the morphological level. The principal component analysis revealed that leaf length, leaf width and stolon branches had a significant contribution to the total variation. The first three principle components showed 72.55% variation. The DNA analysis performed using SRAP primers was used for deducing the diversity at the DNA level. A total of 125 bands were obtained with 8 selected SRAP primer pairs, of which 119 (95.2%) were polymorphic. The polymorphic information content ranged from 0.94 to 0.97 with a mean of 0.96; the marker index ranged from 10.34 to 18.43 with an average value of 14.28. The individuals were successfully assigned to two major groups according to sex in the PCoA and UPGMA dendrogram based on SRAP data, while the individuals could not be grouped based on morphological traits, and the two markers were not significantly correlated (r = 0.0753, P = 0.8489 > 0.05). The molecular data revealed that sex is a critical factor and that female and monoecious plants could be chosen as parents to breed new varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed MS (2017) Molecular characterization of locally adopted sugarcane (Saccharum officinarum L.) varieties using microsatellite markers. J Anim Plant Sci 27(1):164–174

    CAS  Google Scholar 

  • Aliyu B, Akoroda M, Padulosi S (2000) Variation within Vigna reticulata Hooke FII Nig. J Gene:1–8

  • Allen P, Bennett K, Heritage B (2014) SPSS statistics version 22: a practical guide. Cengage Learning Australia, Australia

    Google Scholar 

  • Beetle AA (1950) Buffalograss-native of the shortgrass plains. Wyoming Agr Expt Sta Bull (293):1–31

  • Bisht IS, Mahajan RK, Loknathan TR, Agrawal RC (1998) Diversity in Indian sesame collection and stratification of germplasm accessions in different diversity groups. Genet Resour Crop Ev 45(4):325–335

    Google Scholar 

  • Boczkowska M, Nowosielski J, Nowosielska D, Podyma W (2014) Assessing genetic diversity in 23 early Polish oat cultivars based on molecular and morphological studies. Genet Resour Crop Ev 61(5):927–941

    Google Scholar 

  • Budak H, Shearman R, Parmaksiz I, Dweikat I (2004a) Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theor Appl Genet 109(2):280–288

    CAS  PubMed  Google Scholar 

  • Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riordan TP, Dweikat I (2004b) Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet 108(2):328–334

    CAS  PubMed  Google Scholar 

  • Budak H, Shearman RC, Gulsen O, Dweikat I (2005) Understanding ploidy complex and geographic origin of the Buchloe dactyloides genome using cytoplasmic and nuclear marker systems. Theor Appl Genet 111(8):1545–1552

    CAS  PubMed  Google Scholar 

  • Cheng Y, Ma X, Zhou K, Humphreys MW, Zhang XQ (2016) Phylogenetic analysis of Festuca–Lolium complex using SRAP markers. Genet Resour Crop Evol 63(1):7–18

    Google Scholar 

  • Deepa N, Rakesh S, Sreenivasa MY (2018) Morphological, pathological and mycotoxicological variations among Fusarium verticillioides isolated from cereals. 3 Biotech 8(2):105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diederichsen A (2009) Duplication assessments in Nordic Avena sativa accessions at the Canadian national genebank. Genet Resour Crop Evol 56(4):587–597

    Google Scholar 

  • Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107(2):271–282

    CAS  PubMed  Google Scholar 

  • Grover A, Sharma PC (2014) Development and use of molecular markers: past and present. Crit Rev Biotechnol 36(2):1–13

    Google Scholar 

  • Gulsen O, Shearman RC, Vogel KP, Lee DJ, Baenziger PS, Heng-Moss TM, Budak H (2005) Nuclear genome diversity and relationships among naturally occurring buffalograss genotypes determined by sequence-related amplified polymorphism markers. HortScience 40(3):537–541

    CAS  Google Scholar 

  • Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theor Appl Genet 86(8):927–934

    CAS  PubMed  Google Scholar 

  • Jain JR, Timsina B, Satyan KB, Manohar SH (2017) A comparative assessment of morphological and molecular diversity among Sechium edule (Jacq.) Sw. accessions in India. 3 Biotech 7(2):106

    PubMed  PubMed Central  Google Scholar 

  • Jia S, Yan Z, Wang Y, Wei Y, Xie Z, Zhang F (2017) Genetic diversity and relatedness among ornamental purslane (Portulaca L.) accessions unraveled by SRAP markers. 3 Biotech 7(4):241

    PubMed  PubMed Central  Google Scholar 

  • Jones N, Ougham H, Thomas H, Pašakinskienė I (2009) Markers and mapping revisited: finding your gene. New Phytol 183(4):935–966

    CAS  PubMed  Google Scholar 

  • Kumar A, Singh P, Rai N, Bhaskar G, Datta D (2014) Genetic diversity of French bean (Phaseolus vulgaris L.) genotypes on the basis of morphological traits and molecular markers. Indian J Biotechnol 13:207–213

    CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2):455–461

    CAS  Google Scholar 

  • Liu CJ (1997) Geographical distribution of genetic variation in Stylosanthes scabra revealed by RAPD analysis. Euphytica 98(1):21–27

    CAS  Google Scholar 

  • Liu L, Deng CT, Bao MZ (2008) Analysis of genetic diversity within the population of buffalo grass by morphological traits and ISSR markers. Pratacultural Sci 25(1):100–106

    CAS  Google Scholar 

  • Liu Y, Zhang J-m, Wang X-g, Liu F, Shen Z-b (2013) Genetic diversity in Vicia amoena (Fabaceae) germplasm resource in China using SRAP and ISSR markers. Biochem Syst Ecol 51:86–93

    CAS  Google Scholar 

  • Liu L, Chen W, Zheng X, Li J, Yan D-T, Liu L, Liu X, Wang Y-L (2016) Genetic diversity of Ulmus lamellosa by morphological traits and sequence-related amplified polymorphism (SRAP) markers. Biochem Syst Ecol 66:272–280

    CAS  Google Scholar 

  • Mohammadi SA, Prasanna BM (2003) Analysis of genetic diversity in crop plants—salient statistical tools and considerations. Crop Sci 43(4):1235–1248

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding 2(3):225–238

    CAS  Google Scholar 

  • Pradeep Reddy M, Sarla N, Siddiq E (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128(1):9–17

    CAS  Google Scholar 

  • Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet 98(1):107–112

    CAS  Google Scholar 

  • Reeder JR (1971) Notes on Mexican grasses IX. Miscellaneous chromosome numbers—3. Brittonia 23(2):105–117

    Google Scholar 

  • Rohlf FJ (2002) NTSYS-pc: numerical taxonomy and multivariate analysis system (version 2.1). Exeter Publishing Ltd 2.1, Setauket

    Google Scholar 

  • Roodt R, Spies J, Burger T (2002) Preliminary DNA fingerprinting of the turf grass Cynodon dactylon (Poaceae: Chloridoideae). Bothalia 32(1):117–122

    Google Scholar 

  • Rostamiahmadvandi H, Cheghamirza K, Kahrizi D, Bahraminejad S (2013) Comparison of morpho-agronomic traits versus RAPD and ISSR markers to evaluate genetic diversity among Cuminum cyminum L. accessions. Aust J Crop Sci 7(3):361–367

    CAS  Google Scholar 

  • Sedeh MS (2017) Assessment genetic diversity landraces in Onobrychis sativa using SSR, RAPD and SRAP markers. J AgrIC Biotechnol 2(1):6–10

    Google Scholar 

  • Serba DD (2009) Buffalograss genetic linkage mapping, chinch bug resistance characteristics and turfgrass performance. University of Nebraska, Omaha

    Google Scholar 

  • Seyedimoradi H, Talebi R, Hassani D, Karami F (2012) Comparative genetic diversity analysis in Iranian local grapevine cultivars using ISSR and DAMD molecular markers. Environ Exp Biol 10:125–132

    Google Scholar 

  • Taylor EB, Boughman JW, Groenenboom M, Sniatynski M, Schluter D, Gow JL (2006) Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol Ecol 15(2):343–355

    CAS  PubMed  Google Scholar 

  • Turchetto C, Segatto AL, Telles MP, Diniz-Filho JA, Freitas LB (2014) Infraspecific classification reflects genetic differentiation in the widespread Petunia axillaris complex: a comparison among morphological, ecological, and genetic patterns of geographic variation. Perspect Plant Ecol 16(2):75–82

    Google Scholar 

  • Verma KS, ul Haq S, Kachhwaha S, Kothari SL (2017) RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: a unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech 7(5):288

    PubMed  PubMed Central  Google Scholar 

  • Voigt P, Kneebone W, Harlan J, Ahring R (1975) Registration of Texoka Buffalograss1 (Reg. No. 35). Crop Sci 15(6):885–885

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee TV, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y-j, Wang X-g, Zhang X-q (2011) Development and application of a SRAP marker for the identification of sex in Buchloe dactyloides. Euphytica 181(2):261–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Chen, J., Wang, J. et al. Intra-population genetic diversity of Buchloe dactyloides (Nutt.) Engelm (buffalograss) determined using morphological traits and sequence-related amplified polymorphism markers. 3 Biotech 9, 97 (2019). https://doi.org/10.1007/s13205-019-1632-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1632-9

Keywords

Navigation