Skip to main content
Log in

Cloning of a functional mannose-6-phosphate reductase (M6PR) gene homolog from Egyptian celery plants (Apium graveolens): overexpression in non-mannitol producing plants resulted in mannitol accumulation in transgenic individuals

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Salinity is a major limiting factor affecting crops production, survival and distribution worldwide. Engineering dehydration stress tolerance in commercial crops is a trait of economic importance, especially in saline-affected areas. In this work, we are reporting the cloning of the M6PR gene homolog (encoding a key enzyme, mannose-6-phosphate reductase, for mannitol biosynthesis in celery) from Egyptian celery plants. Using RACE technique, the full-length Egyptian-M6PR gene (1333 bp) was cloned into pRI-201AN plant expression vector. Analysis of the cloned gene revealed that both American and Egyptian clones had both start and stop codons in frame and was found to be 930 base long. The newly cloned EM6PR gene was found to be 126 base longer than its American counterpart at the non-coding region. Six differences at nucleotide level between the Egyptian and American sequences were observed, three of which in the coding region resulting in three polymorphic amino acids differences (tryptophan vs. leucine, glutamine vs. histidine and isoleucine vs. leucine). The newly cloned gene was introduced to tobacco via Agrobacterium and PCR analysis of T0 plants indicated the presence of the EM6PR gene into 10 out of 38 tobacco individuals. Moreover, RT-PCR analysis confirmed the presence of EM6PR transcripts in 9 out of the 10 PCR positive plants. GC/MS analysis of some RT positive individuals indicated the accumulation of mannitol in transgenics tobacco, while mannitol was absent in non-transgenic controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    Article  CAS  Google Scholar 

  • Aly R, Cholakh H, Joel DM, Leibman D, Steinitz B, Zelcer A, Naglis A, Leibman D, Steinitz B, Zelcer A, Naglis A, Yarden O, Gal-On A (2009) Gene silencing of mannose 6-phosphate reductase in the parasitic weed Orobancheaegyptiaca through the production of homologous dsRNA sequences in the host plant. Plant Biotech J 7:487–498

    Article  CAS  Google Scholar 

  • Aono M, Kubo A, Saji A, Tanaka K, Kondo K (1993) Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant Cell Physiol 34:129–135

    CAS  Google Scholar 

  • Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K (1995) Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol 36:1687–1691

    CAS  Google Scholar 

  • Bieleski RL (1982) Sugar alcohols. In: Loewos FA et al (eds) Plant carbohydrates. Springer, Berlin, Heidelberg, pp 158–192

    Chapter  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Metabolic engineering for increased salt tolerance-the next step. Aust J Plant Physiol 23:661–667

    Article  Google Scholar 

  • Bohnert H, Shen B (1999) Transformation and compatible solutes. Sci Hort 78:237–260

    Article  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inzé D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    CAS  Google Scholar 

  • Chan Z, Grumet R, Loescher W (2011) Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. J Exp Bot 62:4787–4803

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Delavault P, Simier P, Severine T, Veronesi C, Fer A, Thalouarn P (2002) Isolation of mannose 6-phosphate reductase cDNA, changes in enzyme activity and mannitol content in broomrape (Orobancheramosa) parasitic on tomato roots. Physiol Planta 115:48–55

    Article  CAS  Google Scholar 

  • Everard JD, Cantini C, Grumet R, Plummer J, Loescher WH (1997) Molecular cloning of mannose-6-phosphate reductase and its developmental expression in Celery. Plant Physiol 113:1427–1435

    Article  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–1057

    Article  CAS  Google Scholar 

  • Galinski EA, Truper HG (1994) Microbial behavior in salt stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Gilmour SJ, Seblot AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  Google Scholar 

  • Goel D, Singh AK, Yadav V, Babbar SB, Murata N, Bansal KC (2011) Transformation of tomato with a bacterial codA gene enhances tolerance to salt and water stresses. J Plant Physiol 168:1286–1294

    Article  CAS  Google Scholar 

  • Gorham J, Mcdonnell E, Budrewicz E, Jones RGW (1985) Salt tolerance in the triticeae: growth and solute accumulation in leaves of Thinopyrum bessarabicum. J Exp Bot 36:1021–1031

    Article  CAS  Google Scholar 

  • Guerzoni JTS, Belintani NG, Moreira RMP, Hoshino AA, Domingues DS, Filho JCB, Vieira LGE (2014) Stress-induced Δ1-pyrroline-5-carboxylate synthetase (P5CS) gene confers tolerance to salt stress in transgenic sugarcane. Acta Physiol Planta 36:2309–2319

    Article  CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics 2014. doi:10.1155/2014/701596

  • Gupta AS, Heinen JL, Holaday JA, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    Article  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis thaliana. Plant Physiol 130:709–783

    Article  Google Scholar 

  • Hema R, Vemanna RS, Sreeramulu S, Reddy CP, Senthil-Kumar M, Udayakumar M (2014) Stable expression of mtlD gene imparts multiple stress tolerance in finger Millet. PLoS ONE 9(6):e99110. doi:10.1371/journal.pone.0099110

    Article  Google Scholar 

  • Hincha DK, Hagemann M (2004) Stabilization of model membranes during drying by compatible solutes involved in the stress tolerance of plants and microorganisms. Biochem J 383:277–283

    Article  CAS  Google Scholar 

  • Hong B, Uknes S, Ho TH (1988) Cloning and characterization of a cDNA encoding an mRNA rapidly induced by ABA in barley aleurone layers. Plant Mol Biol 11:495–506

    Article  CAS  Google Scholar 

  • Hu CA, Delauney AJ, Verma DP (1992) A bifunctional enzyme (Δ-pyrroline-5-carboxylate synthase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    Article  CAS  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281

    Article  CAS  Google Scholar 

  • Huizhong W, Danian H, Ruifang L, Junjun L, Qian Q, Xuexian P (2000) Salt tolerance of transgenic rice (Oryza sativa L.) with mtlD gene and gutD gene. Chin Sci Bull 45:1685–1690

    Article  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  Google Scholar 

  • Karakas B, Ozias-Akins P, Stushnoff C, Suefferheld M, Rieger M (1997) Salinity and drought tolerance of mannitol-accumulating transgenic tobacco. Plant Cell Environ 20:609–616

    Article  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotech 17:287–291

    Article  CAS  Google Scholar 

  • Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen. Plant Cell Environ 25:873–882

    Article  Google Scholar 

  • Le Rudulier D, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224:1064–1068

    Article  Google Scholar 

  • Liu Y, Wang G, Liu J, Peng X, Xie Y, Dai J, Zhang F (1999) Transfer of E. coli gutD gene into maize and regeneration of salt-tolerant transgenic plants. Sci China 42:90–95

    Article  CAS  Google Scholar 

  • Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:1–18

    Article  Google Scholar 

  • Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol Planta 70:553–557

    Article  CAS  Google Scholar 

  • Loescher WH, Everard JD (1996) Metabolism of carbohydrates in sinks and sources: sugar alcohols. In: Zamski E, Schaffer A (eds) Photo-assimilate distribution in plants and crops: source–sink relationships, pp 185–207

  • Loescher WH, Tyson RH, Everard JD, Redgwell RJ, Bieleski RL (1992) Mannitol synthesis in higher plants. Plant Physiol 98:1396–1402

    Article  CAS  Google Scholar 

  • Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, Pardha-Saradhi P (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol Planta 54:647–652

    Article  CAS  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotech J 9:88–99

    Article  CAS  Google Scholar 

  • Prabhavathi V, Yadav JS, Kumar PA, Rajam MV (2002) Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phospho dehydrogenase gene. Mol Breed 9:137–147

    Article  CAS  Google Scholar 

  • Rahnama H, Vakilian H, Fahimi H, Ghareyazie B (2011) Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiol Planta 33:1521–1532

    Article  CAS  Google Scholar 

  • Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014) The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotech J 12:468–479

    Article  CAS  Google Scholar 

  • Roxas VP, Smith RK, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotech 15:988–991

    Article  CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na/H antiporter. PNAS 97:6896–6901

    Article  CAS  Google Scholar 

  • Sickler CM, Edwards GE, Kiirats O, Gao Z, Loescher W (2007) Response of mannitol-producing Arabidopsis thaliana to abiotic stress. Funct Plant Biol 34:382–391

    Article  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochem 28:1057–1060

    Article  CAS  Google Scholar 

  • Sottosanto JB, Saranga Y, Blumwald E (2007) Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana. BMC Plant Bio. 7:1–15

    Article  Google Scholar 

  • Stoop JMH, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping. Trends Plant Sci 1:139–144

    Article  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1992) Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Plant Biol 89:2600–2604

    CAS  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510

    Article  CAS  Google Scholar 

  • Turan S, Cornish K, Kumar S (2012) Salinity tolerance in plants: breeding and genetic engineering. Aust J Crop Sci 6:1337–1348

    Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    Article  CAS  Google Scholar 

  • Williamson JD, Jennings DB, Guo W, Pharr DM (2002) Sugar alcohols, salt stress, and fungal resistance: polyols-multifunctional plant protection. J Am Soc Hort Sci 127:467–473

    CAS  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE 9:1–13

    Google Scholar 

  • Zhifang G, Loescher WH (2003) Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant Cell Environ 26:275–283

    Article  CAS  Google Scholar 

  • Zhu J (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza for the support in achieving this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed S. Tawfik.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests. The current work was partially funded through a Science and Technology Development Fund (STDF) Grant No. 400, Egyptian Ministry for Scientific Research.

Funding

This work, in part, was funded through Grant I.D 400, from the Science and Technology Development Fund (STDF), Academy of Scientific Research, Ministry of Scientific Research, Egypt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, S.R.M., Ibrahim, A.S., Hussien, B.A. et al. Cloning of a functional mannose-6-phosphate reductase (M6PR) gene homolog from Egyptian celery plants (Apium graveolens): overexpression in non-mannitol producing plants resulted in mannitol accumulation in transgenic individuals. 3 Biotech 7, 341 (2017). https://doi.org/10.1007/s13205-017-0975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0975-3

Keywords

Navigation